

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US**

Certificate of Analysis

Kaycha Labs

THC Apple Jack Vape Apple Jack Matrix: Derivative

Sample: DA90913007-004 Harvest/Lot ID: HS-TVF0912201901 **Cultivation Facility: Miami Cultivation Processing Facility: Homestead Processing**

Seed to Sale #8178 3525 3345 3271

Batch Date : N/A

Batch#: HS-TVF0912201901

Sample Size Received: 7 gram Total Weight/Volume: 1590 gram

Retail Product Size: 0.5 ml gram

Ordered: 09/13/19 sampled: 09/13/19

Completed: 09/23/19 Sampling Method: SOP Client Method

PASSED

MISC.

Page 1 of 5

Sep 23, 2019 | CURALEAF FLORIDA

19000 SW 192 STREET MIAMI, FL, 33187, US

PRODUCT IMAGE

SAFETY RESULTS

Heavy Metals

PASSED

Microbials

PASSED

Mycotoxins

PASSED

PASSED

Filth

PASSED

Water Activity

Terpenes TESTED NOT TESTED

CANNABINOID RESULTS

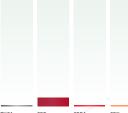
Total THC THC/Container: 405.13 mg

Total CBD 7.976% CBD/Container: 39.88 mg

Total Cannabinoids

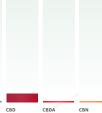
Moisture

Total Cannabinoids / Container :0.000



810.2600 ND

0.0332


LOD

72.1400

0.0243

8.7000

0.0015

2.9100

0.0011

ND

0.0064

0.4810

4.8099

0.0059

21.3400

0.0045

ND

0.0010

11.9300

0.0011

	ш	
	ш	
вс	TOTAL TH	TOTAL
.1930	81.0260	7.97

0.0010

ш	
TOTAL TH	TOTAL CB
81.0260	7.9760
810.2600	79.7600

0.0010

Filth **PASSED** Weight 1g 09/13/19 Analyte Filth and Foreign Materia Analysis Method -SOP.T.40.013 Analytical Batch -DA006357 Instrument Used :

Cannabinoid Profile Test

0.0025

Analyzed by Extraction date : Extracted By: Analysis Method -SOP.T.40.020, SOP.T.30.050 Batch Date : Analytical Batch -DA006375 Instrument Used :

Consums. ID

Full spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detect SOP.T.40.020 for analysis. LOQ for all cannabinoids is $1\ mg/L$).

1.6400

0.0068

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo

Lab Director

State License # CMTL-0002 ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

09/23/19

Kaycha Labs

THC Apple Jack Vape Apple Jack Matrix : Derivative

DAVIE, FL, 33314, US

Certificate of Analysis

Sample: DA90913007-004

Harvest/LOT ID: HS-TVF0912201901

Batch# : HS-TVF0912201901

Sampled: 09/13/19 Ordered: 09/13/19

Sample Size Received: 7 gram Total Weight/Volume: 1590 gram Completed: 09/23/19 Expires: 09/23/20 Sample Method: SOP Client Method

PASSED

Page 2 of 5

19000 SW 192 STREET

Telephone: 7865860672

Email: erick.ramirez@curaleaf.com

MIAMI, FL, 33187, US

Terpenes

TESTED

ND ND 51.433 ND ND 6.584 ND 1.115 ND ND ND 0.434 ND ND	ND ND S.143 ND ND 0.658 ND 0.111 ND			0.007 0.007 0.007 0.007 0.007 0.007 0.007	ND ND ND ND O.535 ND ND	ND ND ND ND O.053 ND ND	TESTED
51.433 ND ND 6.584 ND 1.115 ND ND ND ND ND ND ND	5.143 ND ND 0.658 ND 0.111 ND		TERPINEOL TERPINOLENE TRANS- CARYOPHYLLENE TRANS-NEROLIDOL VALENCENE TRANS-NEROLIDOL TRANS-NEROLIDOL	0.007 0.007 0.007 0.007 0.007	ND ND 0.535 ND ND	ND ND 0.053	TESTED
ND ND 6.584 ND 1.115 ND ND ND 0.434 ND ND ND	ND ND 0.658 ND 0.111 ND ND ND ND 0.043 ND		TERPINOLENE TRANS- CARYOPHYLLENE TRANS-NEROLIDOL VALENCENE Te	0.007 0.007 0.007 0.007 0.007	ND 0.535 ND ND	ND 0.053 ND	TESTED
ND 6.584 ND 1.115 ND ND ND 0.434 ND ND ND	ND 0.658 ND 0.111 ND ND ND ND 0.043 ND ND ND ND ND ND ND ND ND		TRANS-CARYOPHYLLENE TRANS-NEROLIDOL VALENCENE	0.007 0.007 0.007	0.535 ND ND	0.053 ND	TESTED
6.584 ND 1.115 ND ND ND 0.434 ND ND ND	0.658 ND 0.111 ND ND ND 0.043 ND		CARYOPHYLLENE TRANS-NEROLIDOL VALENCENE Telescope Teles	0.007 0.007	ND ND	ND	TESTED
ND 1.115 ND ND ND 0.434 ND ND ND ND ND ND ND	ND 0.111 ND ND ND ND 0.043 ND ND ND ND ND ND ND		TRANS-NEROLIDOL VALENCENE Te	o.007	ND		TESTED
1.115 ND ND ND 0.434 ND ND ND	0.111 ND ND ND 0.043 ND ND ND ND ND ND		VALENCENE Te	o.007	ND		TESTED
ND ND 0.434 ND ND ND	ND ND 0.043 ND ND ND ND		Те	rpenes		ND	TESTED
ND 0.434 ND ND ND ND ND	ND 0.043 ND ND ND ND ND ND				5		TESTED
ND 0.434 ND ND ND ND ND	ND 0.043 ND ND ND ND ND ND				S		TESTED
0.434 ND ND ND ND	0.043 ND ND ND ND				S	XX	TESTED
ND ND ND	ND ND ND					XX	IESIED
ND ND ND	ND ND ND		Analyzed by		XX	XX	
ND ND	ND ND		Analyzed by	<i>X.)</i>	Y X	$\sqrt{\gamma}$	XX
ND	ND		Analyzed by				
			Analyzed by				
	NE			Weight	Extraction	on date	Extracted By
ND	ND		585	1.0140g	09/13/19 04:	09:12	585
ND	ND		Analysis Method	-SOP.T.40	.090		
ND	ND		Analytical Batch -	-DA006336	5		
ND	ND		Instrument Used	(\ /			
ND	ND		Running On:				
ND	ND		Batch Date :				
ND	ND			V \.	$/ \setminus /$	$\overline{}$	
ND	ND		Reagent	Dilutio	on	Consun	ns. ID
< 0.2	< 0.020			10			
ND	ND			10			
ND	ND		Terpenoid profile so	creening is i	performed us	sina GC-MS w	vith Liquid Injection
ND	ND						
ND	ND						
ND							
ND	ND		// //		\	7.	
	< 0.2 ND ND ND ND ND ND	< 0.2	< 0.2	< 0.2 < 0.020 ND ND ND ND ND Terpenoid profile so (Gas Chromatograph using Method SOP.) ND ND ND Using Method SOP.	< 0.2	\[\begin{align*}	

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion, Limit of Detection (LoD) and Limit of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo

Lab Director

State License # CMTL-0002 ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

09/23/19

Signature

Kaycha Labs

THC Apple Jack Vape Apple Jack Matrix: Derivative

Certificate of Analysis

PASSED

Sample: DA90913007-004

Harvest/LOT ID: HS-TVF0912201901

Batch# : HS-TVF0912201901

Sampled: 09/13/19 Ordered: 09/13/19

Sample Size Received: 7 gram Total Weight/Volume: 1590 gram Completed: 09/23/19 Expires: 09/23/20 Sample Method: SOP Client Method

Page 3 of 5

19000 SW 192 STREET

Telephone: 7865860672

Email: erick.ramirez@curaleaf.com

MIAMI, FL, 33187, US

Pesticides

PASSED

Pesticides	LOD	Units	Action Level	Res
DIMETHOATE	0.01	ppm	0.05	ND
ABAMECTIN B1A	0.02	ppm	0.1	ND
PENTACHLORONITROBENZENE	0.005	ppm	0.2	ND
METHYL PARATHION	0.005	ppm	0.2	ND
CYFLUTHRIN	0.025	ppm	1	ND
CIS-PERMETHRIN	0.05	ppm	0.1	ND
ACEPHATE	0.001	ppm	0.1	ND
DIMETHOMORPH	0.005	ppm	0.05	ND
ETHOPROPHOS	0.01	ppm	0.05	ND
ACEQUINOCYL	0.01	ppm	0.1	ND
ACETAMIPRID	0.01	ppm	0.05	ND
ETOFENPROX	0.01	ppm	0.05	ND
ALDICARB	0.02	ppm	0.05	ND
ETOXAZOLE	0.01	ppm	0.05	ND
AZOXYSTROBIN	0.01	ppm	0.05	ND
FENHEXAMID	0.01	ppm	0.1	ND
BIFENAZATE	0.01	ppm	0.1	ND
FENOXYCARB	0.01	ppm	0.05	ND
FENPYROXIMATE	0.01	ppm	0.5	ND
BIFENTHRIN	0.01	ppm	0.1	ND
CARBARYL	0.01	ppm		ND
FIPRONIL	0.02	ppm	0.05	ND
FLONICAMID	0.01	ppm	0.4	ND
CARBOFURAN	0.01	ppm		ND
CHLORANTRANILIPROLE	0.01	ppm		ND
FLUDIOXONIL	0.01	ppm	0.1	ND
HEXYTHIAZOX	0.01	ppm	0.25	ND
CHLORFENAPYR	0.01	ppm	0.05	ND
IMAZALIL	0.01	ppm	0.05	ND
CHLORPYRIFOS	0.01	ppm	0.1	ND
IMIDACLOPRID	0.01	ppm	0.1	ND
CLOFENTEZINE	0.01	ppm	0.2	ND
KRESOXIM-METHYL	0.01	ppm	0.1	ND
COUMAPHOS	0.005	ppm	0.05	ND
MALATHION	0.01	ppm	0.05	ND
CYPERMETHRIN	0.01	ppm	0.5	ND
DAMINOZIDE	0.01	ppm	0.5	ND
METALAXYL	0.01	ppm	0.05	ND
DICHLORVOS	0.05	ppm	0.1	ND
METHIOCARB	0.01	ppm	0.05	ND
METHOMYL	0.01	ppm	0.1	ND
DIAZANON	0.01	ppm	0.05	ND
MEVINPHOS	0.01	ppm	0.05	ND
MYCLOBUTANIL	0.01	ppm	0.1	ND
NALED	0.01	ppm	0.25	ND
OXAMYL	0.01	ppm	0.25	ND
		re:::		

Pesticides	LOD	Units	Action Level	Result
PACLOBUTRAZOL	0.01	ppm	0.05	ND
TRANS-PERMETHRIN	0.05	ppm	0.1	ND
PHOSMET	0.01	ppm	0.1	ND
PIPERONYL BUTOXIDE	0.01	ppm	3	ND
PRALLETHRIN	0.05	ppm	0.1	ND
PROPICONAZOLE	0.01	ppm	0.1	ND
PROPOXUR	0.01	ppm	0.1	ND
PYRETHRIN I	0.01	ppm	0.5	ND
PYRIDABEN	0.01	ppm	0.2	ND
SPINOSAD (SPINOSYN A)	0.01	ppm	0.1	ND
SPINOSAD (SPINOSYN D)	0.01	ppm	0.1	ND
SPIROMESIFEN	0.01	ppm	0.1	ND
SPIROTETRAMAT	0.02	ppm	0.1	ND
SPIROXAMINE	0.01	ppm	0.05	ND
TEBUCONAZOLE	0.01	ppm	0.05	ND
THIACLOPRID	0.01	ppm	0.05	ND
THIAMETHOXAM	0.01	ppm	0.05	ND
TRIFLOXYSTROBIN	0.01	ppm	0.1	ND

Pesticides

PASSED

Analyzed by Weight **Extraction date** Extracted By

Analysis Method - SOP.T.30.065, SOP.T.40.065, SOP.T.40.066, SOP.T.40.070 , SOP.T.30.065, SOP.T40.070 Analytical Batch - DA006343 Instrument Used : Running On :

Reagent Dilution Consums, ID

Pesticide screen is performed using LC-MS and/or GC-MS which can screen down to below single digit ppb concentrations for regulated Pesticides. Currently we analyze for 67 Pesticides. (Method: SOP.T.30.060 Sample Preparation for Pesticides Analysis via LCMSMS and GCMSMS. SOP.T.40.066/SOP.T.40.066/SOP.T.40.070 Procedure for Pesticide Quantification Using LCMS and GCMS).* Volatile Pesticide screening is performed using GC-MS which can screen down to below single digit ppb

concentrations for regulated Pesticides. Analytes marked with an asterisk were tested using GC-MS.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo

Lab Director

State License # CMTL-0002 ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

09/23/19

Signature

Kaycha Labs

THC Apple Jack Vape Apple Jack Matrix: Derivative

Certificate of Analysis

PASSED

19000 SW 192 STREET MIAMI, FL, 33187, US **Telephone:** 7865860672

Email: erick.ramirez@curaleaf.com

Sample: DA90913007-004

Harvest/LOT ID: HS-TVF0912201901

Batch# : HS-TVF0912201901

PASS

PASS

PASS

PASS

PASS

ND

Sampled: 09/13/19 Ordered: 09/13/19

Sample Size Received: 7 gram Total Weight/Volume: 1590 gram Completed: 09/23/19 Expires: 09/23/20

Sample Method: SOP Client Method

Page 4 of 5

ETHYL ETHER

ETHYLENE OXIDE

METHYLPENTANE) **HEXANES (3-**

METHYLPENTANE)

PROPANE

FTHYI RENZENE

Residual Solvents

PASSED

PASSED

Solvent	LOD	Units	Action Level (PPM)	Pass/Fail	Result	
,2-DICHLOROETHANE	0.2	ppm	2	PASS	ND	
,1-DICHLOROETHENE	0.2	ppm	8	PASS	ND	
,4-DIOXANE	22.8	ppm		PASS	ND	
PRIITANOI	140	nnm		DACC	ND	

ND 2-ETHOXYETHANOL ND PASS 2-PROPANOL 140 PASS ND ppm 500 750 ACETONE 140 mag PASS ND ACETONITRILE ppm 60 **PASS** ND 0.1 ND

BUTANES (ISO-BUTANE) ppm 2000 PASS ND **BUTANES (N-BUTANE)** 50 2000 ND ppm PASS CHLOROFORM 0.2 **PASS** ND ppm ETHANOL 140 maa 5000 PASS ND **ETHYL ACETATE** 140 400 PASS 217.587 CYCLOHEXANE 232.8 ND PASS DICHLOROMETHANE

ppm

mag

ppm

0.5

130.2

17.4

500

60

2100

HEPTANE 140 maa 500 PASS HEXANES (2,2-17.4 60 **PASS** DIMETHYLBUTANE) HEXANES (2.3-17.4 maa 60 PASS DIMETHYLBUTANE) HEXANES (2-17.4 ppm 60 PASS

ppm

ISOPROPYL ACETATE 140 ppm PASS ND METHALENE CHLORIDE ND METHANOL 250 ND PASS N-HEXANE 17.4 ppm 60 PASS ND PENTANES (ISO-PENTANE) maa PASS ND PENTANES (N-PENTANE) ppm 750 PASS ND PENTANES (NEO-PENTANE) 50 PASS ND

ppm

ppm

TETRAHYDROFURAN ppm 150 PASS ND This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. Thi TOTAL ATLEBES rification. The lesults relate RMP to the master or proceeds halyzed. Test Pesults are

confidential unless explicitly waived otherwise. Void after 1 year from test gnd date. Cannabingid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit of QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit of Detecti Limit of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Analyzed by

Residual Solvents

Extracted By

09/13/19 01:09:08 0.0223a Analysis Method -SOP.T.40.032

Analytical Batch -DA006368 Instrument Used:

Running On: Batch Date:

Dilution Reagent Consums, ID 00276446 160861-1

Weight

Residual solvents screening is performed using GC-MS which can detect below single digit ppm concentrations. Currently we analyze for 21 Residual solvents.(Method: SOP.T.40.032 Residual Solvents Analysis via GC-MS).

24152438

Extraction date

Jorge Segredo Lab Director

State License # CMTL-0002 ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

09/23/19

Signature

DAVIE, FL, 33314, US

Kaycha Labs

THC Apple Jack Vape Apple Jack Matrix: Derivative

PASSED

Certificate of Analysis

Sample : DA90913007-004

Harvest/LOT ID: HS-TVF0912201901

Batch# : HS-TVF0912201901 Sampled: 09/13/19

Ordered: 09/13/19

Sample Size Received: 7 gram Total Weight/Volume: 1590 gram Completed: 09/23/19 Expires: 09/23/20 Sample Method: SOP Client Method

Page 5 of 5

19000 SW 192 STREET

Telephone: 7865860672

Email: erick.ramirez@curaleaf.com

MIAMI, FL, 33187, US

Microbials

PASSED

Mycotoxins

el (PPM)

Analyte	LOD	Result
ASPERGILLUS_TERREUS_1J2		not present in 1 gram.
ASPERGILLUS_NIGER		not present in 1 gram.
ASPERGILLUS_FUMIGATUS		not present in 1 gram.
ASPERGILLUS_FLAVUS		not present in 1 gram.
SALMONELLA_SPECIFIC_GENE		not present in 1 gram.
ESCHERICHIA_COLI_SHIGELLA_S	PP	not present in 1 gram.

Analysis Method -SOP.T.40.043 / SOP.T.40.044 / SOP.T.40.041

Analytical Batch -DA006361 Batch Date :

Instrument Used: Running On:

Analyzed by	Weight	Extraction date	Extracted By
513	0.9984g	09/13/19	513

Reagent	Consums. I
090619.R02	A01
	2803018
	013
	009A
	019
	009

Microbiological testing for Fungal and Bacterial Identification via Polymerase Chain Reaction (PCR) method consisting of sample DNA amplified via tandem Polymerase Chain Reaction (PCR) as a crude lysate which avoids purification. (Method SOP.T.40.043) If a pathogenic Escherichia Coli, Salmonella, Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, or Aspergillus terreus is detected in 1g of a sample, the sample fails the microbiological-impurity testing. Pour-plating is used for quantitation and confirmation, Total Yeast and Mold has an action limit of 100,000 CFU.

Action Level (cf	fu/g) Analyte	LOD	Units	Result	Action Leve
	AFLATOXIN_G2	0.001	ppm	ND	0.02
	AFLATOXIN_G1	0.001	ppm	ND	0.02
	AFLATOXIN_B2	0.001	ppm	ND	0.02
	AFLATOXIN_B1	0.001	ppm	ND	0.02
	OCHRATOXIN A	0.001	ppm	ND	0.02

Analysis Method -SOP.T.30.065, SOP.T.40.065

Analytical Batch -DA006424

Instrument Used : Running On:

Batch Date: Analyzed by

Weigh
weign
1a

Extraction date

Extracted By

Aflatoxins B1, B2, G1, G2, and Ochratoxins A testing using LC-MS. (Method: SOP.T.30.065 for Sample Preparation and SOP.T40.065 Procedure for Mycotoxins Quantification Using LCMS. LOQ 1.0 ppb). Aflatoxin B1, B2, G1, and G2 must individually be <20ug/Kg. Ochratoxins must be <20µg/Kg.

091119.R10 072519.R23

Heavy Metals

PASSED

Reagent	Dilution
091119.R09	50
091319.R01	
082719 R04	

052419.01 Metal LOD Unit Result Action Level (PPM) ARSENIC 0.0062878 ppm ND 0.2

CADMIUM 0.0040357 ppm ND 0.2 LEAD 0.0022993 ppm ND 0.5 **MERCURY** 0.0016524 ppm

Extraction date Analyzed by Weight **Extracted By** 0.4921q 09/13/19 03:09:42

Analysis Method -SOP.T.40.050, SOP.T.30.052 Analytical Batch -DA006372

Instrument Used : Running On:

Batch Date:

Heavy Metals screening is performed using ICP-MS (Inductively Coupled Plasma - Mass Spectrometer) which can screen down to below single digit ppb concentrations for regulated heavy metals using Method SOP.T.30.052 Sample Preparation for Heavy Metals Analysis via ICP-MS and SOP.T.40.050 Heavy Metals Analysis via ICP-MS.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control OC parameter, NC=Non-controlled OC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo

Lab Director

State License # CMTL-0002 ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

09/23/19

Signature