

Gainesville, FL, 32609, US

Certificate of Analysis

Kaycha Labs

Dutch Treat 1g Vape Cartridge **Dutch Treat** Matrix: Derivative

Sample: GA20625001-006 Harvest/Lot ID: HVFV108-2206-10608

Batch#: DF-DUTR-2206-9784

Cultivation Facility: Gainesville Cultivation Processing Facility: Gainesville Processing Seed to Sale# HVFV108-2206-10608

Batch Date: 06/24/22

Sample Size Received: 16 gram Total Batch Size: 2212 gram

> Retail Product Size: 1 gram Ordered: 06/25/22

Sampled: 06/25/22 Completed: 06/28/22

Sampling Method: SOP.T.20.010.FL

Page 1 of 6

Jun 28, 2022 | Liberty Health Sciences, FL

18770 N CR 225

Gainesville, FL, 32609, US

PRODUCT IMAGE

SAFETY RESULTS

Pesticides

PASSED

Microbials

PASSED

PASSED

PASSED

PASSED

Water Activity PASSED

Moisture

MISC.

TESTED

PASSED

Cannabinoid

88.074%

Total CBD

Total CBD/Container: 0 mg

Total Cannabinoids

Total Cannabinoids/Container: 925.13

	DO THE	- :
	D9-THC	
0/.	88 074	

	D9-THC	THCA	CBD	CBDA	D8-THC	CBG	CBGA	CBN	THCV	CBDV	СВС
%	88.074	ND	ND	ND	ND	2.861	ND	0.394	0.602	ND	0.582
mg/g	880.74	ND	ND	ND	ND	28.61	ND	3.94	6.02	ND	5.82
LOD	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	%	%	%	%	%	%	%	%	%	%	%
Analyzed b 3404, 2821	oy: L, 3205, 2338	/		Weight: 0.0986g		Extraction da 06/26/22 12				Extracted by: 2821	

Analysis Method : SOP.T.40.031, SOP.T.30.031 Analytical Batch : GA045954POT Instrument Used : GA-HPLC-003 2030C PDA

Reviewed On: 06/27/22 11:54:55 Batch Date: 06/25/22 08:19:39

Running on: 06/26/22 15:00:31

Reagent: 020322.R09; 010421.48; 060922.11; 061122.R32; 061122.R29

Consumables: 947.271; 470228-424; 9291.271; LLS-00-0005; 12400-133CD-133C; R0NB32898; 000000146137; 41064115C4115B; 210268; 206639 Pipette: GA-005; GA-149; GA-153; GA-169 (Dispenser)

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39

This Kaycha Labs Cerfitication shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Rob Bruton

Lab Director

State License # CMTL-0001 ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA Testing 97164

06/28/22

Kaycha Labs

Dutch Treat 1g Vape Cartridge **Dutch Treat** Matrix : Derivative

PASSED

Certificate of Analysis

Liberty Health Sciences, FL

18770 N CR 225 Gainesville, FL, 32609, US Telephone: (833) 254-4877

 $\textbf{Email:} \ Quality as surance @ liberty health sciences.com$

Sample : GA20625001-006 Harvest/Lot ID: HVFV108-2206-10608

Sampled: 06/25/22 Ordered: 06/25/22

Batch#: DF-DUTR-2206-9784 Sample Size Received: 16 gram Total Batch Size: 2212 gram

Completed: 06/28/22 Expires: 06/28/23 Sample Method: SOP.T.20.010

Page 2 of 6

Terpenes

TESTED

77 <0.2 76 6.33 77 0.86 77 1.16 77 0.21 77 ND 77 1.28 77 ND	0.633 0.086 0.116 0.021 ND 0.128 ND ND ND ND ND ND ND ND ND ND		A A A A I I I I R C C C C C C C C C C C C C C C		0.00 0.00 0.00 0.00 0.996 0.9996 0.061A.FL, SOP.T.4 5TER 5-002 OP2010S 0:28 0322.49; 010421. 0364; 9291.271; 39 GA-013; GA-211 I	7 ND 7 0.7 7 ND 7 0.31 Ex 06 9 06 140.061A.F	Review Batch	0:15:47 wed On: 06/27 Date: 06/25/2 419634; RONE				
77 0.86 77 1.16 77 0.21 77 ND 77 1.28 77 ND	0.086 0.116 0.021 ND 0.128 ND		A A A I I I I I I I I I I I I I I I I I	ALPHA-CEDRENE ALPHA-HUMULENE TRANS-NEROLIDOL GUAIOL nalyzed by: 404, 3134, 3205, 2338 nalysis Method : SOP.T.30 nalytical Batch : GA-04597! strument Used : GA-GCMS unning on : 06/26/22 12:30 illution : 50 eagent : 060922.R22; 050 onsumables : 947.271; H2! 44C4 9441; 209598; 20663 ipette : GA-002; GA-006; G	0.00 0.00 0.00 0.00 Weight: 0.9996g 0.061A.FL, SOP.T 5TER 5-002 QP2010S 00:28 0322.49; 010421. 0364; 9291.271; 39 GA-013; GA-211 I	7 ND 7 0.7 7 ND 7 0.31 Ex 06 9 06 140.061A.F	ND 0.07 ND 0.031 traction c /26/22 10 EL Review Batch	0:15:47 wed On: 06/27 Date: 06/25/2 419634; RONE	3134 7/22 12:03:10 22 14:24:48			
77 1.16 77 0.21 77 ND 77 1.28 77 ND	0.116 0.021 ND 0.128 ND		A A A A I I I R R C C C P P	ALPHA-HUMULENE TRANS-NEROLIDOL GUAIOL malyzed by: 404, 3134, 3205, 2338 malytical Batch: GA04597! strument Used: GA-GCMS unning on: 06/26/22 12:30 illution: 50 eagent: 060922.R22; 050 onsumables: 947.271; H2 44C4 9441; 209598; 2066; 01 ipette: GA-002; GA-006; 03	0.00 0.00 0.00 Weight: 0.9996; 0.061A.FL, SOP.T. 5TER 5-002 QP2010S 00:28 0322.49; 010421. 0364; 9291.271; 39 GA-013; GA-211 I	7 0.7 7 ND 7 0.31 8 06 40.061A.F	0.07 ND 0.031 traction of /26/22 10 EL Review Batch	0:15:47 wed On: 06/27 Date: 06/25/2 419634; RONE	3134 7/22 12:03:10 22 14:24:48			
07 0.21 17 ND 17 1.28 17 ND 17 ND	0.021 ND 0.128 ND		A A A A I I I R R C C C P P	TRANS-NEROLIDOL GUAIOL nalyzed by: 404, 3134, 3205, 2338 nalytical Batch: 6A04597! strument Used: GA-GCMS unning on: 06/26/22 12:3(illution: 50 eagent: 060922.R22; 050 onsumables: 947.271; H2 44C4 9441; 209598; 2066; 64	0.00 0.00 Weight: 0.9996g 0.061A.FL, SOP.T6 5TER 5-002 OP2010S 0:28 0:322.49; 010421. 0:364; 9291.271; 39 GA-013; GA-211 [7 ND 7 0.31 g 06 40.061A.F	ND 0.031 traction o/26/22 10 EL Review Batch	0:15:47 wed On: 06/27 Date: 06/25/2 419634; RONE	3134 7/22 12:03:10 22 14:24:48			
77 ND 17 1.28 17 ND 17 ND	ND 0.128 ND		A A A III R D R R C C P P P	GUAIOL nalyzed by: 404, 3134, 3205, 2338 nalysis Method : SOP.T.30. nalytical Batch : GA04597! sstrument Used : GA-GCMS unning on : 06/26/22 12:3(illution : 50 eagent : 060922.R22; 050 onsumables : 947.271; H2 44C4 944	0.00 Weight: 0.9996; 0.061A.FL, SOP.T 5TER 5-002 QP2010S 0:28 0:322.49; 010421. 0:364; 9291.271; 39 GA-013; GA-211 [7 0.31 g 06 40.061A.F	0.031 traction of /26/22 10 Review Batch	0:15:47 wed On: 06/27 Date: 06/25/2 419634; RONE	3134 7/22 12:03:10 22 14:24:48			
17 1.28 17 ND 17 ND	0.128 ND		A A A Ir R D R R C C P P P	nalyzed by: 404, 3134, 3205, 2338 nalysis Method : SOP.T.30. nalytical Batch : GA04597! istrument Used : GA-GCMS unning on : 06/26/22 12:3(illution : 50 eagent : 060922.R22; 050 onsumables : 947.271; H2 44C4 9441; 209598; 2066; 02 ipette : GA-002; GA-006; 03	Weight: 0.9996g .061A.FL, SOP.T.A. 5TER 5-002 QP2010S .0:28 .0322.49; 010421. 20364; 9291.271; 39 GA-013; GA-211 [9 06 40.061A.F 51 LLS-00-0	traction c /26/22 10 EL Review Batch	0:15:47 wed On: 06/27 Date: 06/25/2 419634; RONE	3134 7/22 12:03:10 22 14:24:48			
17 ND 17 ND 17 ND 17 ND 17 ND 17 ND 17 ND 17 ND 17 3.4 17 1.28	ND ND ND ND ND ND O.34 O.128 ND ND		A A III R D R R C 9 P P	404, 3134, 3205, 2338 nalysis Method: SOP.T.30. nalytical Batch: GA04597! strument Used: GA-G6128 unning on: 06/26/22 12:30 illution: 50 eagent: 060922.R22; 050 onsumables: 947.271; H2 44C4 944]; 209598; 2066; 01 ipette: GA-002; GA-006; 03	0.99966 0.061A.FL, SOP.T6 5TER 5-002 OP2010S 0:28 0:322.49; 010421. 0:364; 9291.271; 39 GA-013; GA-211 [g 06 40.061A.F 51 LLS-00-0 Dispenser	/26/22 10 Review Batch	0:15:47 wed On: 06/27 Date: 06/25/2 419634; RONE	3134 7/22 12:03:10 22 14:24:48			
07 ND 07 ND 07 ND 07 ND 07 ND 07 3.4 07 1.28	ND ND ND ND 0.34 0.128 ND		A A III R D R R C 9 P P	404, 3134, 3205, 2338 nalysis Method: SOP.T.30. nalytical Batch: GA04597! strument Used: GA-G6128 unning on: 06/26/22 12:30 illution: 50 eagent: 060922.R22; 050 onsumables: 947.271; H2 44C4 944]; 209598; 2066; 01 ipette: GA-002; GA-006; 03	0.99966 0.061A.FL, SOP.T6 5TER 5-002 OP2010S 0:28 0:322.49; 010421. 0:364; 9291.271; 39 GA-013; GA-211 [g 06 40.061A.F 51 LLS-00-0 Dispenser	/26/22 10 Review Batch	0:15:47 wed On: 06/27 Date: 06/25/2 419634; RONE	3134 7/22 12:03:10 22 14:24:48			
07 ND 07 ND 07 ND 07 ND 07 3.4 07 1.28	ND ND ND 0.34 0.128 ND		A Ir R D R C C 9 P	nalytical Batch: 6A04597: strument Used: GA-GCMS unning on: 06/26/22 12:30 ilution: 50 eagent: 060922, R22; 050 onsumables: 947.271; H2: 444C4 9441; 209598; 20663 ipette: GA-002; GA-006; 63	5TER S-002 QP2010S :0:28 :0322.49; 010421. :0364; 9291.271; 39 GA-013; GA-211 [51 LLS-00-0 Dispenser	Review Batch	Date : 06/25/2	22 14:24:48			
07 ND 07 ND 07 ND 07 3.4 07 1.28	ND ND ND 0.34 0.128 ND		Ir R D R C G 9	strument Used : GA-GCMS unning on : 06/26/22 12:30 ilution : 50 eagent : 060922.R22; 050 onsumables : 947.271; H2 44C4 944J; 209598; 20663 ipette : GA-002; GA-006; G	5-002 QP2010S :0:28 :0:322.49; 010421. :0364; 9291.271; 39 GA-013; GA-211 [LLS-00-0 Dispenser	Batch 005; 210	Date : 06/25/2	22 14:24:48			
07 ND 07 ND 07 3.4 07 1.28	ND ND 0.34 0.128 ND ND		R D R C C 9	unning on: 06/26/22 12:30 ilution: 50 eagent: 060922.R22; 050 onsumables: 947.271; H20 44C4 944J; 209598; 20663 ipette: GA-002; GA-006; G	0322.49; 010421. 20364; 9291.271; 39 GA-013; GA-211 [LLS-00-0 Dispenser	005; 210	419634; RONE				
7 ND 7 3.4 7 1.28 7 ND	ND 0.34 0.128 ND ND		R C 9	ilution: 50 eagent: 060922.R22; 050 onsumables: 947.271; H2 44C4 944J; 209598; 20663 ipette: GA-002; GA-006; G	0322.49; 010421. 20364; 9291.271; 39 GA-013; GA-211 [LLS-00-0 Dispenser			B32898; 000000146			
7 3.4 7 1.28 7 ND	0.34 0.128 ND ND		R C 9	eagent: 060922.R22; 050 onsumables: 947.271; H2 44C4 944J; 209598; 20663 ipette: GA-002; GA-006; G	20364; 9291.271; 39 GA-013; GA-211 [LLS-00-0 Dispenser			B32898; 000000146			
7 1.28 7 ND	0.128 ND ND		9 P	onsumables : 947.271; H2 44C4 944J; 209598; 20663 ipette : GA-002; GA-006; G	20364; 9291.271; 39 GA-013; GA-211 [LLS-00-0 Dispenser			B32898; 000000146			
7 ND	ND ND		Р	ipette : GA-002; GA-006; G	GA-013; GA-211 [ectrometry.	997			
	ND							ectrometry.	XX			
				erpenoid testing is performed	Pipette: GA-002; GA-006; GA-013; GA-211 Dispenser Terpenoid testing is performed utilizing Gas Chromatography Mass Spectrometry.							
7 ND					i utilizing Gas Chron	iatograpny	1-1033 Spc					
0.26	0.026											
7 0.47	0.047											
7 1.11	0.111											
7 1.38	0.138											
7 ND	ND											
7 0.77												
7 0.28												
7 14.4	6 1.446											
7 ND	ND											
	0.07											
	ND											
	ND											
	07 4.07 07 <0.2 07 14.4 07 ND 07 0.7	07 4.07 0.407 07 <0.2 <0.02 07 14.46 1.446 07 ND ND 07 0.7 0.07 13 ND ND	07 4.07 0.407 07 <0.2 <0.02 07 14.46 1.446 07 ND ND 07 0.7 0.07 13 ND ND	07 4.07 0.407 07 <0.2 <0.02 07 14.46 1.446 07 ND ND 07 0.7 0.07 13 ND ND	07 4.07 0.407 07 <0.2 <0.02 07 14.46 1.446 07 ND ND 07 0.7 0.07 13 ND ND	07 4.07 0.407 07 <0.2 <0.02 07 14.46 1.446 07 ND ND 07 0.7 0.07 13 ND ND	07 4.07 0.407 07 <0.2 <0.02 07 14.46 1.446 07 ND ND 07 0.7 0.07 13 ND ND	07 4.07 0.407 07 <0.2 <0.02 07 14.46 1.446 07 ND ND 07 0.7 0.07 13 ND ND	07 4.07 0.407 07 <0.2 <0.02 07 14.46 1.446 07 ND ND 07 0.7 0.07 13 ND ND 13 ND ND			

This Kaycha Labs Cerfitication shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Rob Bruton

Lab Director

State License # CMTL-0001 ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

06/28/22

Kaycha Labs

Dutch Treat 1g Vape Cartridge **Dutch Treat**

Matrix : Derivative

Certificate of Analysis

Liberty Health Sciences, FL

18770 N CR 225 Gainesville, FL, 32609, US Telephone: (833) 254-4877

 $\textbf{Email:} \ Quality as surance @ liberty health sciences.com$

Sample : GA20625001-006

Harvest/Lot ID: HVFV108-2206-10608

Sampled: 06/25/22 Ordered: 06/25/22

Batch#: DF-DUTR-2206-9784 Sample Size Received: 16 gram

Total Batch Size: 2212 gram Completed: 06/28/22 Expires: 06/28/23

Sample Method: SOP.T.20.010

PASSED

Page 3 of 6

Pesticides

PASSED

Pesticide	LOD	Units	Action	Pass/Fail	Result	Pesticide	<u> </u>	LOD	Units	Action	Pass/Fail	Result
. 65416146		0	Level			resticide		LOD	Offics	Level	r a33/1 a11	Result
ABAMECTIN B1A	0.01	ppm	0.1	PASS	ND	PROPOXUR		0.01	ppm	0.1	PASS	ND
ACEPHATE	0.01	ppm	0.1	PASS	ND	PYRETHRINS		0.01	ppm	0.5	PASS	ND
ACEQUINOCYL	0.01	ppm	0.1	PASS	ND	PYRIDABEN		0.01	ppm	0.2	PASS	ND
ACETAMIPRID	0.01	ppm	0.1	PASS	ND	SPIROMESIFEN		0.01	ppm	0.1	PASS	ND
ALDICARB	0.01	ppm	0.1	PASS	ND	SPIROTETRAMAT		0.01	ppm	0.1	PASS	ND
AZOXYSTROBIN	0.01	ppm	0.1	PASS	ND	SPIROXAMINE		0.01	ppm	0.1	PASS	ND
BIFENAZATE	0.01	ppm	0.1	PASS	ND	TEBUCONAZOLE		0.01	ppm	0.1	PASS	ND
BIFENTHRIN	0.01	ppm	0.1	PASS	ND				1 A A	A A TO WA		ND
BOSCALID	0.01	PPM	0.1	PASS	ND	THIACLOPRID		0.01	ppm	0.1	PASS	
CARBARYL	0.01	ppm	0.5	PASS	ND	THIAMETHOXAM		0.01	ppm	0.5	PASS	ND
CARBOFURAN	0.01	ppm	0.1	PASS	ND	TRIFLOXYSTROBIN		0.01	ppm	0.1	PASS	ND
CHLORANTRANILIPROLE	0.01	ppm	1	PASS	ND	PENTACHLORONITROBENZENE (F	PCNB) *	0.01	PPM	0.15	PASS	ND
CHLORMEQUAT CHLORIDE	0.01	ppm	1	PASS	ND	PARATHION-METHYL *		0.01	PPM	0.1	PASS	ND
CHLORPYRIFOS	0.01	ppm	0.1	PASS	ND	CAPTAN *		0.07	PPM	0.7	PASS	ND
CLOFENTEZINE	0.01	ppm	0.2	PASS	ND	CHLORDANE *		0.01	PPM	0.1	PASS	ND
COUMAPHOS	0.01	ppm	0.1	PASS	ND	CHLORFENAPYR *		0.01	PPM	0.1	PASS	ND
DAMINOZIDE	0.01	ppm		PASS	ND	CYFLUTHRIN *		0.05	PPM	0.5	PASS	ND
DIAZINON	0.01	ppm	0.1	PASS	ND ND	CYPERMETHRIN *		0.05	PPM	0.5	PASS	ND
DICHLORVOS	0.01	ppm	0.1	PASS PASS		7						
DIMETHOATE	0.01	ppm	7		ND	Analyzed by: 3404, 3134, 2338, 3298	Weight: 1.0477q		Extraction 06/26/22 13		Extract 3134	ed by:
ETHOPROPHOS	0.01	ppm	0.1	PASS	ND ND	Analysis Method : SOP.T.30.101.Fl						T 40 102
ETOFENPROX	0.01	ppm	0.1	PASS		SOP.T.40.151.FL	_, 30F.1.30.10	Z.I L, 3	OF.1.30.13	1.1 L, 30F.1.4	10.101.1 L, 30F	.1.40.102.
ETOXAZOLE	0.01	ppm	0.1		ND	Analytical Batch : GA045980PES			Reviewed	On:06/27/2	2 10:58:53	
FENHEXAMID	0.01	ppm	0.1	PASS	ND	Instrument Used : GA-LCMS-001 P	ES		Batch Dat	te:06/25/22	14:44:21	
FENOXYCARB	0.01	ppm	0.1	PASS PASS	ND	Running on : 06/26/22 18:06:12						
FENPYROXIMATE	0.01 0.01	ppm ppm	0.1	PASS	ND ND	Dilution: 10	000422 820	0004	22.026			
FIPRONIL			0.1	PASS	ND	Reagent: 061222.R01; 050621.01 Consumables: 947.271; 470228-4				0410634, 204	SOFF172.	
FLONICAMID	0.01	ppm		PASS		41064115C4115B; 209598; 206639		; LL3-0	0-0005; 21	0419034; 290	0055175;	
FLUDIOXONIL	0.01	ppm	0.1		ND ND	Pipette : GA-002; GA-006; GA-013;		enser				
HEXYTHIAZOX	0.01	ppm	0.1	PASS		Testing for agricultural agents is per	formed utilizing	Liquio	Chromatoo	graphy Triple-	Quadrupole Ma	SS
IMAZALIL	0.01 0.01	ppm	0.1	PASS	ND ND	Spectrometry and Gas Chromatograp	ohy Triple-Qua	drupole	Mass Spec	trometry in ac	cordance with	F.S. Rule
IMIDACLOPRID		ppm	0.4	PASS		64ER20-39.						
KRESOXIM-METHYL	0.01	ppm	0.1	PASS	ND ND	Analyzed by: Weigh	t: Extr	raction	date:		Extracted by: NA	
MALATHION	0.01 0.01	ppm	0.2	PASS	ND	NA					NA	
METALAXYL		ppm	0.1	PASS	ND	Analysis Method: SOP.T.30.060, S Analytical Batch: GA046004VOL	OP.1.40.060	D.	O howoive	n:06/27/22 1	0.57.13	
METHIOCARB	0.01	ppm	0.1	PASS	ND	Instrument Used : GA-GCMS-006				06/26/22 16		
METHOMYL		ppm	0.1	PASS	ND	Running on : 06/26/22 18:10:22				,,		
MEVINPHOS	0.01	ppm		PASS		Dilution: 100						
MYCLOBUTANIL	0.01	ppm	0.1		ND	Reagent: 061222.R01; 050621.01						
NALED	0.01 0.01	ppm	0.25 0.5	PASS PASS	ND ND	Consumables: 947.271; 470228-4		; LLS-0	0-0005; 21	0419634; 29	5055173;	
OXAMYL PAGLORUTRAZOL		ppm	0.5	PASS	ND ND	41064115C4115B; 209598; 206639 Pipette : GA-002; GA-006; GA-013;		ancar				
PACLOBUTRAZOL	0.01	ppm				Testing for agricultural agents is per			Chromator	aranhy Tripla	Quadrupole Ma	cc
PHOSMET	0.01	ppm	0.1	PASS	ND ND	Spectrometry and Gas Chromatograp						
PIPERONYL BUTOXIDE	0.01	ppm	-			64ER20-39.	,pic qua	apoic	abb bpcc		dance men	
PRALLETHRIN	0.01	ppm	0.1	PASS	ND							
PROPICONAZOLE	0.01	ppm	0.1	PASS	ND							

This Kaycha Labs Cerfitication shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Rob Bruton

Lab Director

State License # CMTL-0001 ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

06/28/22

Kaycha Labs

Dutch Treat 1g Vape Cartridge **Dutch Treat** Matrix : Derivative

Certificate of Analysis

PASSED

Liberty Health Sciences, FL

18770 N CR 225 Gainesville, FL, 32609, US Telephone: (833) 254-4877

Email: Qualityassurance@libertyhealthsciences.com

Sample : GA20625001-006

Harvest/Lot ID: HVFV108-2206-10608

Sampled: 06/25/22 Ordered: 06/25/22

Batch#: DF-DUTR-2206-9784 Sample Size Received: 16 gram

Total Batch Size: 2212 gram Completed: 06/28/22 Expires: 06/28/23

Sample Method: SOP.T.20.010

Page 4 of 6

Residual Solvents

PASSED

Solvents	LOD	Units	Action Level	Pass/Fail	Result
METHANOL	25	ppm	250	PASS	ND
ETHANOL	500	ppm	5000	PASS	<2500
PENTANES (N-PENTANE)	75	ppm	750	PASS	ND
ETHYL ETHER	50	ppm	500	PASS	ND
ACETONE	75	ppm	750	PASS	ND
2-PROPANOL	50	ppm	500	PASS	ND
ACETONITRILE	6	ppm	60	PASS	ND
DICHLOROMETHANE	12.5	ppm	125	PASS	ND
N-HEXANE	25	ppm	250	PASS	ND
ETHYL ACETATE	40	ppm	400	PASS	ND
BENZENE	0.1	ppm	1	PASS	ND
HEPTANE	500	ppm	5000	PASS	ND
TOLUENE	15	ppm	150	PASS	ND
PROPANE	500	ppm	5000	PASS	ND
CHLOROFORM	0.2	ppm	2	PASS	ND
1,2-DICHLOROETHANE	0.2	ppm	2	PASS	ND
BUTANES (N-BUTANE)	500	ppm	5000	PASS	ND
ETHYLENE OXIDE	0.5	ppm	5	PASS	ND
1,1-DICHLOROETHENE	0.8	ppm	8	PASS	ND
TRICHLOROETHYLENE	2.5	ppm	25	PASS	ND

Analyzed by: Weight: Extraction date: Extracted by:

Analysis Method: SOP.T.40.041.FL Analytical Batch : GA045974SOL Instrument Used : GA-GCMS-004 QP2020NX Running on: 06/25/22 15:51:35

 ${\bf Dilution:1}$ Reagent:

Consumables : 27296; 854996 Pipette :

Residual solvents analysis is performed utilizing Gas Chromatography Mass Spectrometry in accordance with with F.S. Rule 64ER20-39.

This Kaycha Labs Cerfitication shall not be reproduced, unless in its entirety, without written approval from Kaycha

Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Rob Bruton

Lab Director

Reviewed On: 06/26/22 13:14:23 Batch Date: 06/25/22 14:04:02

ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

06/28/22

Kaycha Labs

Dutch Treat 1g Vape Cartridge **Dutch Treat**

Matrix : Derivative

Certificate of Analysis

Liberty Health Sciences, FL

18770 N CR 225 Gainesville, FL, 32609, US Telephone: (833) 254-4877

Email: Qualityassurance@libertyhealthsciences.com

Sample : GA20625001-006

Harvest/Lot ID: HVFV108-2206-10608

Sampled: 06/25/22 Ordered: 06/25/22

Batch#: DF-DUTR-2206-9784 Sample Size Received: 16 gram Total Batch Size: 2212 gram

Completed: 06/28/22 Expires: 06/28/23

Sample Method: SOP.T.20.010

PASSED

Page 5 of 6

Microbial

PASSED

Mycotoxins

Analyte LOD Units Result ESCHERICHIA COLI SHIGELLA SPP SALMONELLA SPECIFIC GENE Not Present		
SPP SALMONELLA SPECIFIC GENE Not Present	Pass / Fail	Action Level
	PASS	
	PASS	
ASPERGILLUS FLAVUS Not Present	PASS	
ASPERGILLUS FUMIGATUS Not Present	PASS	
ASPERGILLUS TERREUS Not Present	PASS	
ASPERGILLUS NIGER Not Present	PASS	
TOTAL YEAST AND MOLD 10 CFU/g <10	PASS	100000
Analyzed by: Weight: Extraction date:	Extracte	ed by:
3404, 1790, 3574, 1541 1.02g 06/25/22 17:20:40	1790	

Analysis Method: SOP.T.40.041, SOP.T.40.043, SOP.T.40.045, SOP.T.40.056B, SOP.T.40.058.FL

Analytical Batch : GA045976MIC Reviewed On: 06/28/22 15:12:41 Instrument Used: GA-TYM-001 Tempo Filler and Batch Date: 06/25/22 14:36:23

Running on: 06/25/22 17:21:44

Reagent: 052622.09

Consumables: 2303260; 2303190; 2304090; 2306070; 2304090; 2305240; GA-185; GA-213;

61630-123C6-123E Pipette: GA-154

Microbial testing is performed utilizing various technologies including: PCR, RTPCR, MPN, and traditional culture based techniques in accordance with F.S. Rule 64ER20-39...

Analyzed by: NA	Weight:	Extraction date: NA	Extracted by: NA
Analysis Method : S	OP.T.40.041		
Analytical Batch : G	A045977TYM		Reviewed On: 06/28/22 15:13:13
Instrument Used : (GA-TYM-001 bioM	érieux Tempo Filler and	Batch Date: 06/25/22 14:36:40

Running on : 06/25/22\ 17:19:42 Dilution: 90

Reagent: 052622.09

Consumables: 2304090; 2306070; 2304090; GA-185; GA-213; 61630-123C6-123E Pipette: GA-154

Total yeast and mold testing is performed utilizing MPN and traditional culture based techniques in accordance with F.S. Rule 64ER20-39.

مګه
o()o
\sim

PASSED

Analyte		LOD	Units	Result	Pass / Fail	Action Level
AFLATOXIN B2		0.002	ppm	ND	PASS	0.02
AFLATOXIN B1		0.002	ppm	ND	PASS	0.02
OCHRATOXIN A		0.002	ppm	ND	PASS	0.02
AFLATOXIN G1		0.002	ppm	ND	PASS	0.02
AFLATOXIN G2		0.002	ppm	ND	PASS	0.02
Analyzed by: 3404, 3134, 2338, 3298	Weight: 1.0477g		on date: 2 13:15:2	7	Extracto 3134	ed by:

Analysis Method: SOP.T.30.101.FL. SOP.T.40.101.FL. SOP.T.30.102.FL. SOP.T.40.102.FL Analytical Batch : GAO46005MYC Instrument Used : GA-LCMS-001 MYC Running on : 06/26/22 18:14:16 Reviewed On: 06/27/22 11:01:05 Batch Date: 06/26/22 16:27:06

Reagent : aflatoxin_b2; aflatoxin_b1; aflatoxin_g1; aflatoxin_g2

Consumables: 0.02; 0.02; 0.02; 0.02

 $\label{thm:mass} \mbox{Mycotoxins testing utilizing Liquid Chromatography with Triple-Quadrupole Mass Spectrometry in accordance with F.S. Rule 64ER20-39.$

Heavy Metals

PASSED

Metal		LOD	Units	Result	Pass / Fail	Action Level
ARSENIC		0.02	PPM	ND	PASS	0.2
CADMIUM		0.02	PPM	ND	PASS	0.2
MERCURY		0.02	PPM	ND	PASS	0.2
LEAD		0.05	PPM	ND	PASS	0.5
Analyzed by: 3404, 3134, 2338, 1541	Weight: 0.5574g	Extraction date: 06/26/22 11:04:24			Extracto 3134	ed by:

Instrument Used : GA-ICPMS-002 Batch Date: 06/25/22 14:43:04 Running on:

Dilution: 100

Reagent: 052422.R35; 062222.R63; 010421.51; 061621.03; 041622.R02; 051622.R03;

041722.R01; 042022.R45

Consumables: CGR0114; 12400-133CD-133C; 209598; L2019501 Pipette: GA-012; GA-183; GA - 194; GA-195; GA-193

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Cerfitication shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Rob Bruton

Lab Director

ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA Testing 97164

06/28/22

Kaycha Labs

Dutch Treat 1g Vape Cartridge **Dutch Treat**

Matrix : Derivative

Certificate of Analysis

Liberty Health Sciences, FL

18770 N CR 225 Gainesville, FL, 32609, US Telephone: (833) 254-4877

 $\textbf{Email:} \ Quality as surance @ liberty health sciences.com$

Sample : GA20625001-006

Harvest/Lot ID: HVFV108-2206-10608

Sampled: 06/25/22

Ordered: 06/25/22

Batch#: DF-DUTR-2206-9784 Sample Size Received: 16 gram Total Batch Size: 2212 gram

Completed: 06/28/22 Expires: 06/28/23 Sample Method: SOP.T.20.010

PASSED

Page 6 of 6

PASSED

Analyte LOD Units Result P/F Action Level Filth and Foreign Material ND PASS 5 Analyzed by: 3404, 3209, 1541 Weight: Extraction date: Extracted by: 06/25/22 14:16:07 11.7g

Analysis Method: SOP.T.30.074, SOP.T.40.074

Analytical Batch: GA045964FIL Instrument Used: GA-Filth/Foreign Material Microscope

Running on:

Dilution: 1 Reagent : Consumables :

Pipette:

Filth and foreign material inspection is performed by visual inspection utilizing naked eye and microscope technologies in accordance with F.S. Rule 64ER20-39.

Water Activity

PASSED

Reviewed On: 06/25/22 18:23:51 Batch Date: 06/25/22 12:34:18

Analyte	LOD	Units	Result	P/F	Action	Leve
Water Activity	0.1	aw	0.581	PASS	0.85	
Analyzed by:	Weight:	Extraction date:		E	xtracted by:	
3404, 3134, 3192	1.0881g	06/26/22 1	16:11:36	3	134	

Analysis Method: SOP.T.40.019 Analytical Batch : GA045978WAT

Instrument Used : GA-203 Rotronic HygroPalm **Running on :**

Reviewed On: 06/27/22 13:02:21 Batch Date: 06/25/22 14:40:53

Dilution: 1 Reagent: Consumables: 107264

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Cerfitication shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Rob Bruton

Lab Director

ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

06/28/22