

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Kaycha Labs

Cresco Live Budder 2g - PCG Pch (H) PCG Pch (H) Matrix: Derivative Classification: High THC Type: Rosin

СОМІ	PLIAN	Fica CE FOF ID: DA5042	R RETA		\na	lys	is	Cultivati Processir	Harvest/ on Facilit ng Facility ource Fac	Lot ID: 0700 Batch#: 070 y: FL - India r : FL - India ility: FL - Ind	ner - Not Listed 862050293944 0862050293944 ntown (4430) ntown (4430) iantown (4430) 735276579778
	CRESCO	Sunnyside DA50425007-0 EITHIL BERNER	315						Sam R(R	Harvest I ple Size Rec Total Amo etail Produc etail Servin Orde Sam Comple	Date: 04/23/25 ceived: 9 units ount: 263 units t Size: 2 gram g Size: 2 gram Servings: 1 cered: 04/25/25 pled: 04/25/25 ceted: 04/30/25 : SOP.T.20.010
22205 Sw M		Sunnysid	е		Sι	inn	ysic	le*	(R) -	-	ASSED
SAFETY RE	ESULTS										MISC.
в Ю		Hg	Ç	ؠٛ	ؠ	Ä			$\mathbf{\mathbf{\mathbf{5}}}$		Ô
Pesticid PASSE		avy Metals PASSED	Microbials PASSED	Mycoto PASS	SED	Residuals Solvents PASSED	Filth PASSED	Water / PAS		Moisture IOT TESTED	Terpenes TESTED
Ä	Cannal	oinoid									TESTED
	Total	THC 2.8359 THC/Container : 1	/0 1456.700 mg		3 0.	I CBD 211% CBD/Container	,) : 4.220 mg		-}85	Cannabinoid 951% nnabinoids/Con	S 7 D tainer : 1719.020
%	D9-тнс 0.722	тнса 82.227	CBD ND	CBDA 0.241 4.82	D8-THC 0.061	свд 0.361 7.22	CBGA 2.287 45.74	CBN ND	THCV ND		свс 0.052
mg/unit LOD	14.44 0.001	1644.54 0.001	ND 0.001	4.82 0.001	1.22 0.001	7.22	45.74 0.001	ND 0.001	ND 0.001	ND 0.001	1.04 0.001
nalyzed by:	%	%	%	% Weight:		% raction date:	%	%		% ted by:	%
alytical Batch :	: SOP.T.40.031, S : DA085877POT			0.108g	04,	/28/25 00:30:17	Batch Date : 04/26/25	12:52:34	1879,	3335	
ilution : 400 eagent : 04232! onsumables : 94	5.R29; 031125.0 47.110; 0431211 ; DA-108; DA-078	L; 062224CH01; 0000	355309								

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Cresco Live Budder 2g - PCG Pch (H) PCG Pch (H) Matrix : Derivative Type: Rosin

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

PASSED

TESTED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50425007-015 Harvest/Lot ID: 0700862050293944 Batch#:0700862050293944 Sample Size Received:9 units Sampled : 04/25/25 Ordered : 04/25/25

Total Amount : 263 units Completed : 04/30/25 Expires: 04/30/26 Sample Method : SOP.T.20.010

Page 2 of 6

Terpenes

Terpenes	LOD (%)	Pass/Fail	mg/unit	Result (%)	Terpenes	LOD (%)	Pass/Fail	mg/unit	Result (%)	
TOTAL TERPENES	0.007	TESTED	127.26	6.363	SABINENE HYDRATE	0.007	TESTED	ND	ND	
BETA-CARYOPHYLLENE	0.007	TESTED	33.14	1.657	VALENCENE	0.007	TESTED	ND	ND	
LIMONENE	0.007	TESTED	24.96	1.248	ALPHA-CEDRENE	0.005	TESTED	ND	ND	
BETA-MYRCENE	0.007	TESTED	13.52	0.676	ALPHA-PHELLANDRENE	0.007	TESTED	ND	ND	
ALPHA-BISABOLOL	0.007	TESTED	12.94	0.647	ALPHA-TERPINENE	0.007	TESTED	ND	ND	
LPHA-HUMULENE	0.007	TESTED	12.74	0.637	ALPHA-TERPINOLENE	0.007	TESTED	ND	ND	
INALOOL	0.007	TESTED	8.78	0.439	CIS-NEROLIDOL	0.003	TESTED	ND	ND	
SUAIOL	0.007	TESTED	6.12	0.306	GAMMA-TERPINENE	0.007	TESTED	ND	ND	
ETA-PINENE	0.007	TESTED	3.60	0.180	Analyzed by:	Weigh	t	Extract	ion date:	Extracted b
ENCHYL ALCOHOL	0.007	TESTED	2.60	0.130	4444, 4451, 585, 1440	0.2179	∋g	04/26/2	25 13:25:16	4444
LPHA-TERPINEOL	0.007	TESTED	2.40	0.120	Analysis Method : SOP.T.30.061A.FL, SOP.T.40	0.061A.FL				
ALPHA-PINENE	0.007	TESTED	2.18	0.109	Analytical Batch : DA085845TER Instrument Used : DA-GCMS-008				Batch Date : 04/26/25 09:	7.23
ARNESENE	0.007	TESTED	2.10	0.105	Analyzed Date : 04/30/25 08:23:53				batch bate 104/20/25 09:	11.32
RANS-NEROLIDOL	0.005	TESTED	1.18	0.059	Dilution : 10					
AMPHENE	0.007	TESTED	0.54	0.027	Reagent : N/A					
ARYOPHYLLENE OXIDE	0.007	TESTED	0.46	0.023	Consumables : 947.110; 04402004; 2240626;	; 0000355309				
CARENE	0.007	TESTED	ND	ND	Pipette : DA-065					
ORNEOL	0.013	TESTED	ND	ND	Terpenoid testing is performed utilizing Gas Chroma	atography Mass Spectrometry	r. For all Flower s	imples, the Tota	I Terpenes % is dry-weight corrected	
AMPHOR	0.007	TESTED	ND	ND						
EDROL	0.007	TESTED	ND	ND						
UCALYPTOL	0.007	TESTED	ND	ND						
ENCHONE	0.007	TESTED	ND	ND						
SERANIOL	0.007	TESTED	ND	ND						
GERANYL ACETATE	0.007	TESTED	ND	ND						
EXAHYDROTHYMOL	0.007	TESTED	ND	ND						
SOBORNEOL	0.007	TESTED	ND	ND						
SOPULEGOL	0.007	TESTED	ND	ND						
IEROL	0.007	TESTED	ND	ND						
CIMENE	0.007	TESTED	ND	ND						
ULEGONE	0.007	TESTED	ND	ND						
	0.007	TESTED	ND	ND						

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 04/30/25

Cresco Live Budder 2g - PCG Pch (H) PCG Pch (H) Matrix : Derivative Type: Rosin

PASSED

PASSED

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com

Sample : DA50425007-015 Harvest/Lot ID: 0700862050293944

Sampled : 04/25/25 Ordered : 04/25/25

Batch#:0700862050293944 Sample Size Received:9 units Total Amount : 263 units Completed : 04/30/25 Expires: 04/30/26 Sample Method : SOP.T.20.010

Page 3 of 6

Pesticides

Pesticide	LOD	Units	Action	Pass/Fail	Result	Pesticide		LOD	Units	Action	Pass/Fail	Result
TOTAL CONTAMINANT LOAD (PESTICIDES)	0.010	ppm	5	PASS	ND	OXAMYL		0.010	nnm	Level 0.5	PASS	ND
TOTAL DIMETHOMORPH	0.010		0.2	PASS	ND	PACLOBUTRAZOL		0.010		0.1	PASS	ND
TOTAL PERMETHRIN	0.010	ppm	0.1	PASS	ND					0.1	PASS	ND
TOTAL PYRETHRINS	0.010	ppm	0.5	PASS	ND	PHOSMET		0.010				
TOTAL SPINETORAM	0.010	ppm	0.2	PASS	ND	PIPERONYL BUTOXIDE		0.010		3	PASS	ND
TOTAL SPINOSAD	0.010	ppm	0.1	PASS	ND	PRALLETHRIN		0.010		0.1	PASS	ND
ABAMECTIN B1A	0.010	ppm	0.1	PASS	ND	PROPICONAZOLE		0.010	ppm	0.1	PASS	ND
ACEPHATE	0.010	ppm	0.1	PASS	ND	PROPOXUR		0.010	ppm	0.1	PASS	ND
ACEQUINOCYL	0.010	ppm	0.1	PASS	ND	PYRIDABEN		0.010	ppm	0.2	PASS	ND
ACETAMIPRID	0.010	ppm	0.1	PASS	ND	SPIROMESIFEN		0.010	ppm	0.1	PASS	ND
ALDICARB	0.010	ppm	0.1	PASS	ND	SPIROTETRAMAT		0.010	ppm	0.1	PASS	ND
AZOXYSTROBIN	0.010	ppm	0.1	PASS	ND	SPIROXAMINE		0.010	maa	0.1	PASS	ND
BIFENAZATE	0.010	ppm	0.1	PASS	ND	TEBUCONAZOLE		0.010		0.1	PASS	ND
BIFENTHRIN	0.010	ppm	0.1	PASS	ND	THIACLOPRID		0.010		0.1	PASS	ND
BOSCALID	0.010	ppm	0.1	PASS	ND	THIAMETHOXAM		0.010		0.5	PASS	ND
CARBARYL	0.010	ppm	0.5	PASS	ND					0.1	PASS	ND
CARBOFURAN	0.010	ppm	0.1	PASS	ND	TRIFLOXYSTROBIN		0.010				
CHLORANTRANILIPROLE	0.010	ppm	1	PASS	ND	PENTACHLORONITROBENZENE	(PCNB) *	0.010		0.15	PASS	ND
CHLORMEQUAT CHLORIDE	0.010	ppm	1	PASS	ND	PARATHION-METHYL *		0.010		0.1	PASS	ND
CHLORPYRIFOS	0.010	ppm	0.1	PASS	ND	CAPTAN *		0.070	ppm	0.7	PASS	ND
CLOFENTEZINE	0.010	ppm	0.2	PASS	ND	CHLORDANE *		0.010	ppm	0.1	PASS	ND
COUMAPHOS	0.010		0.1	PASS	ND	CHLORFENAPYR *		0.010	ppm	0.1	PASS	ND
DAMINOZIDE	0.010		0.1	PASS	ND	CYFLUTHRIN *		0.050	ppm	0.5	PASS	ND
DIAZINON	0.010		0.1	PASS	ND	CYPERMETHRIN *		0.050	ppm	0.5	PASS	ND
DICHLORVOS	0.010		0.1	PASS	ND	Analyzed by:	Weight:	Extraction	1 date:		Extracted by:	
DIMETHOATE	0.010		0.1	PASS	ND	3621, 585, 1440	0.25g	04/27/25 0			4640,450,585	
ETHOPROPHOS	0.010		0.1	PASS	ND	Analysis Method : SOP.T.30.102	.FL, SOP.T.40.1	.02.FL				
ETOFENPROX	0.010		0.1	PASS	ND	Analytical Batch : DA085840PE						
ETOXAZOLE	0.010		0.1	PASS	ND	Instrument Used : DA-LCMS-003			Batch	Date :04/26/	25 09:01:03	
FENHEXAMID	0.010		0.1	PASS	ND	Analyzed Date :04/29/25 10:05 Dilution : 250	:07					
FENOXYCARB	0.010		0.1	PASS	ND	Reagent: 042525.R11; 081023.	01					
FENPYROXIMATE	0.010		0.1	PASS	ND	Consumables : 040724CH01; 22						
FIPRONIL	0.010		0.1	PASS	ND ND	Pipette : N/A						
FLONICAMID	0.010		0.1	PASS	ND	Testing for agricultural agents is p		ng Liquid Chrom	natography T	riple-Quadrupo	le Mass Spectror	metry in
FLUDIOXONIL	0.010 0.010		0.1	PASS	ND	accordance with F.S. Rule 64ER20						
HEXYTHIAZOX			0.1	PASS	ND	Analyzed by:	Weight:	Extraction			Extracted by:	
	0.010 0.010		0.1	PASS	ND	450, 585, 1440 Analysis Method :SOP.T.30.151	0.25g	04/27/25 09	9:12:50		4640,450,585	
IMIDACLOPRID KRESOXIM-METHYL	0.010		0.4	PASS	ND	Analytical Batch : DA085841VO		.151.FL				
MALATHION	0.010		0.2	PASS	ND	Instrument Used : DA-GCMS-00			Batch D	ate:04/26/25	09:02:27	
METALAXYL	0.010		0.2	PASS	ND	Analyzed Date :04/28/25 12:51	:17					
METHIOCARB	0.010		0.1	PASS	ND	Dilution: 250						
METHOCARD	0.010		0.1	PASS	ND	Reagent: 042525.R11; 081023.						
MEVINPHOS	0.010	P.P.	0.1	PASS	ND	Consumables : 040724CH01; 22 Pipette : DA-080; DA-146; DA-2		3001				
MYCLOBUTANIL	0.010		0.1	PASS	ND	Testing for agricultural agents is p		ng Gas Chromat	tography Trip	le-Quadrupolo	Mass Spectrome	atry in
NALED	0.010		0.25	PASS	ND	accordance with F.S. Rule 64ER20		ig das chi offiai	lography IIIb	ne quau upole	mass specialitie	ci y III
INCLU	0.010	P.P.I.I	0.25									

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature

04/30/25

Cresco Live Budder 2g - PCG Pch (H) PCG Pch (H) Matrix : Derivative Type: Rosin

PASSED

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Julio.Chavez@crescolabs.com Sample : DA50425007-015 Harvest/Lot ID: 0700862050293944 Batch# : 0700862050293944 Sample : 04/25/25 Total Amount : 263 units

 Batch#::0700862050293944
 Sample Size Received 19 units

 Sampled::04/25/25
 Total Amount : 263 units

 Ordered::04/25/25
 Completed::04/30/25 Expires: 04/30/26

 Sample Method::SOP.T.20.010

Page 4 of 6

Residual Solvents

Solvents	LOD	Units	Action Level	Pass/Fail	Result	
1,1-DICHLOROETHENE	0.800	ppm	8	PASS	ND	
1,2-DICHLOROETHANE	0.200	ppm	2	PASS	ND	
2-PROPANOL	50.000	ppm	500	PASS	ND	
ACETONE	75.000	ppm	750	PASS	ND	
CETONITRILE	6.000	ppm	60	PASS	ND	
BENZENE	0.100	ppm	1	PASS	ND	
BUTANES (N-BUTANE)	500.000	ppm	5000	PASS	ND	
CHLOROFORM	0.200	ppm	2	PASS	ND	
DICHLOROMETHANE	12.500	ppm	125	PASS	ND	
THANOL	500.000	ppm	5000	PASS	ND	
THYL ACETATE	40.000	ppm	400	PASS	ND	
THYL ETHER	50.000	ppm	500	PASS	ND	
THYLENE OXIDE	0.500	ppm	5	PASS	ND	
IEPTANE	500.000	ppm	5000	PASS	ND	
IETHANOL	25.000	ppm	250	PASS	ND	
I-HEXANE	25.000	ppm	250	PASS	ND	
ENTANES (N-PENTANE)	75.000	ppm	750	PASS	ND	
ROPANE	500.000	ppm	5000	PASS	ND	
TOLUENE	15.000	ppm	150	PASS	ND	
TOTAL XYLENES	15.000	ppm	150	PASS	ND	
RICHLOROETHYLENE	2.500	ppm	25	PASS	ND	
nalyzed by: 451, 585, 1440	Weight: 0.0222g	Extraction date: 04/26/25 14:52:57	Extracted by: 4571,4451			
Analysis Method : SOP.T.40.041.FL Analytical Batch : DA085883SOL Instrument Used : DA-GCMS-002 Analyzed Date : 04/28/25 12:27:22			Batch Date : 04/26/25 1	4:15:42		
Dilution : 1						

Dilution : 1 Reagent : 030420.09 Consumables : 429651; 315545 Pipette : DA-309 25 uL Syringe 35028

Residual solvents analysis is performed utilizing Gas Chromatography Mass Spectrometry in accordance with with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 04/30/25

PASSED

Cresco Live Budder 2g - PCG Pch (H) PCG Pch (H) Matrix : Derivative Type: Rosin

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50425007-015 Harvest/Lot ID: 0700862050293944

Sampled : 04/25/25 Ordered : 04/25/25

Batch#:0700862050293944 Sample Size Received:9 units Total Amount : 263 units Completed : 04/30/25 Expires: 04/30/26 Sample Method : SOP.T.20.010

Dade	350	ht í	5
Page	5 5 1		,

🥵 мі	crobial				PAS	SED	స్తో	Μ	ycoto>	kins			PAS	SED
Analyte	I	OD	Units	Result	Pass / Fail	Action Level	Analyte			LOD	Units	Result	Pass / Fail	Action Level
ASPERGILLUS TERR	EUS			Not Present	PASS		AFLATOXIN	B2		0.0)2 ppm	ND	PASS	0.02
ASPERGILLUS NIGE				Not Present	PASS		AFLATOXIN			0.0		ND	PASS	0.02
ASPERGILLUS FUMI	GATUS			Not Present	PASS		OCHRATOXI	A		0.0)2 ppm	ND	PASS	0.02
ASPERGILLUS FLAV	US			Not Present	PASS		AFLATOXIN	G1		0.0)2 ppm	ND	PASS	0.02
SALMONELLA SPEC	IFIC GENE			Not Present	PASS		AFLATOXIN	G2		0.0)2 ppm	ND	PASS	0.02
ECOLI SHIGELLA				Not Present	PASS		Analyzed by:		Weight:	Extraction da	+o.	Evi	tracted by	
TOTAL YEAST AND	MOLD	10	CFU/g	<10	PASS	100000	3621, 585, 144	0	0.25g	04/27/25 09:			40,450,58	
Analyzed by: 777, 4520, 585, 1440	Weight: 1.1002g		Extraction da 04/26/25 09:		Extracted 4520,477		Analytical Bate	h : DA08	.T.30.102.FL, SC 85842MYC					
Analysis Method : SOP Analytical Batch : DAO		40.05	8.FL, SOP.T.	40.209.FL			Instrument Us Analyzed Date	,	25 10.03.43	Ba	tch Date :	04/26/25 0	9:03:55	
Instrument Used : Path 2720 Thermocycler DA (95*C) DA-049,DA-402 Analyzed Date : 04/29/ Dilution : 10	A-010,Fisher Scienti Thermo Scientific	fic Is	otemp Heat	Block 08:	06:26		Pipette : N/A	040724	CH01; 221021D					
eagent : 022625.48; consumables : 758200 Pipette : N/A		5.R03	; 080724.11				accordance wit	n F.S. Rul			Jie-Quadi up			
Analyzed by: 1777, 4892, 585, 1440	Weight: 1.1002g		Extraction da 04/26/25 09:		Extracted 4520,477		[Hg]	He	eavy M	etais			PAS	SEL
Analysis Method : SOP Analytical Batch : DAO Instrument Used : Incu	85833TYM	28 [c	alibrated wit	h Batch Da	te:04/26/2	5 08:07:20	Metal			LOD	Units		Fail	Action Level
DA-382]								AMINA	NT LOAD MET		· · · · · ·	ND	PASS	1.1
nalyzed Date : 04/29/	25 09:20:01						ARSENIC			0.0		ND	PASS	0.2
ilution: 10							CADMIUM			0.0		ND	PASS PASS	0.2
eagent: 022625.48; consumables: N/A	022625.61; 022625	5.R53					MERCURY LEAD			0.0	20 ppm 20 ppm	ND ND	PASS	0.2 0.5
vipette : N/A							Analyzed by:		Weight:	Extraction		ND	Extracted	
Fotal yeast and mold test accordance with F.S. Rule		zing M	IPN and traditi	onal culture base	d techniques	; in	1022, 585, 144	0	0.2592g	04/26/25 1			4531	iby.
ICCOLORIGE WITH F.S. KUR	9 04EK2U-39.						Analysis Metho Analytical Bato Instrument Us Analyzed Date	:h : DA08 ed : DA-I	CPMS-004		atch Date :	04/26/25 1	L1:38:54	
							Dilution : 50 Reagent : 041 120324.07; 04	425.R05 2225.R0 040724	; 042225.R05; 0 04 CH01; J609879-		2125.R17;	042125.R1	18; 04212	5.R19;

Pipette : DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

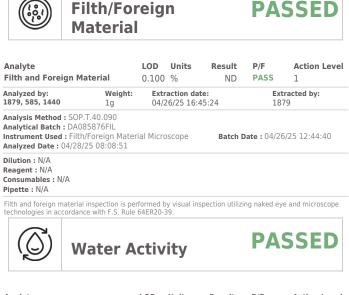
State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature

04/30/25

Cresco Live Budder 2g - PCG Pch (H) PCG Pch (H) Matrix : Derivative Type: Rosin

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664


Certificate of Analysis

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Julio.Chavez@crescolabs.com Sample : DA50425007-015 Harvest/Lot ID: 0700862050293944 Batch# : 0700862050293944 Sample Size Received : 9 units

Sampled : 04/25/25 Ordered : 04/25/25 Sample Size Received : 9 units Total Amount : 263 units Completed : 04/30/25 Expires: 04/30/26 Sample Method : SOP.T.20.010

Analyte Water Activity	_	. OD).010	Units aw	Result 0.474	P/F PASS	Action Level 0.85				
Analyzed by: 4797, 585, 1440	Weight: 0.7996g		traction 4/26/25 1			tracted by: '97				
Analysis Method : SOP.T.40.019 Analytical Batch : DA085849WAT Instrument Used : DA-028 Rotronic Hygropalm Batch Date : 04/26/25 09:36:25 Analyzed Date : 04/28/25 12:35:34										
Dilution : N/A Reagent : 101724.3 Consumables : PS-3 Pipette : N/A										

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Sellion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 04/30/25

Page 6 of 6