

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Kaycha Labs

Supply Smalls 14g - Metaverse (S) Metaverse (S) Matrix: Flower Classification: High THC Type: Flower-Cured



Production Method: Cured

Batch#: 4668816718138241

Harvest Date: 04/21/25 Sample Size Received: 3 units Total Amount: 390 units Retail Product Size: 14 gram

Servings: 1 Ordered: 04/22/25 Sampled: 04/22/25 Completed: 04/25/25 Revision Date: 04/28/25 Sampling Method: SOP.T.20.010

PASSED

Harvest/Lot ID: 4668816718138241

Seed to Sale#: 4885594249557923

Cultivation Facility: FL - Indiantown (4430)

Processing Facility : FL - Indiantown (4430) Source Facility: FL - Indiantown (4430)

Pages 1 of 5

## **Certificate of Analysis**

Laboratory Sample ID: DA50422014-006



Apr 28, 2025 | Sunnyside 22205 Sw Martin Hwy indiantown, FL, 34956, US

| SAFETY R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ESULTS                                                                                                                                                 |                                 |                        |                                        |                             |                                                                            |                               |                        |                   |                                         | MISC.                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------|----------------------------------------|-----------------------------|----------------------------------------------------------------------------|-------------------------------|------------------------|-------------------|-----------------------------------------|-------------------------|
| R<br>Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [                                                                                                                                                      | Hg                              | Ċ,                     | ç                                      |                             | Ä                                                                          |                               |                        | 5)                |                                         | Ô                       |
| Pesticio<br>PASSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                        | wy Metals<br>ASSED              | Microbials<br>PASSED   | Mycotoxi<br>PASSEI                     | ) 9                         | esiduals<br>Solvents<br><b>T TESTED</b>                                    | Filth<br>PASSED               |                        | Activity<br>SSED  | Moisture<br>PASSED                      | Terpenes<br>TESTED      |
| Ä                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cannab                                                                                                                                                 | oinoid                          |                        |                                        |                             |                                                                            |                               |                        |                   |                                         | TESTED                  |
| A REAL PROPERTY OF A REAL PROPER |                                                                                                                                                        | THC<br>4549<br>HC/Container : : | -                      |                                        |                             | CBD<br>052%<br>BD/Container :                                              |                               | E                      | 329               | Cannabinoid<br>.363%<br>annabinoids/Con | -                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                        |                                 |                        |                                        |                             |                                                                            |                               |                        |                   |                                         |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                        |                                 |                        |                                        |                             |                                                                            |                               |                        |                   |                                         |                         |
| %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>дэ-тнс</sup><br>0.561                                                                                                                             | тнса<br>27.245                  | CBD<br>ND              | CBDA<br>0.060                          | D8-ТНС<br>0.031             | свс<br>0.132                                                               | CBGA<br>1.251                 | CBN<br>ND              | тнсv<br>ND        | CBDV<br>ND                              | свс<br>0.083            |
| mg/unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.561<br>78.54                                                                                                                                         | 27.245<br>3814.30               | ND<br>ND               | 0.060<br>8.40                          | 0.031<br>4.34               | 0.132<br>18.48                                                             | 1.251<br>175.14               | ND<br>ND               | ND<br>ND          | ND<br>ND                                | 0.083<br>11.62          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.561                                                                                                                                                  | 27.245                          | ND                     | 0.060                                  | 0.031                       | 0.132                                                                      | 1.251                         | ND                     | ND                | ND                                      | 0.083                   |
| mg/unit<br>LOD<br>Analyzed by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.561<br>78.54<br>0.001<br>%                                                                                                                           | 27.245<br>3814.30<br>0.001      | ND<br>ND<br>0.001      | 0.060<br>8.40<br>0.001                 | 0.031<br>4.34<br>0.001      | 0.132<br>18.48<br>0.001                                                    | 1.251<br>175.14<br>0.001      | ND<br>ND<br>0.001      | ND<br>ND<br>0.001 | ND<br>ND<br>0.001                       | 0.083<br>11.62<br>0.001 |
| mg/unit<br>LOD<br>Analyzed by:<br>3335, 1665, 585,<br>Analysis Method<br>Analytical Batch<br>Instrument Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.561<br>78.54<br>0.001<br>%<br>, 1440<br>1: SOP.T.40.031, SCC<br>:: DA085688POT                                                                       | 27.245<br>3814.30<br>0.001<br>% | ND<br>ND<br>0.001      | 0.060<br>8.40<br>0.001<br>%<br>Weight: | 0.031<br>4.34<br>0.001      | 0.132<br>18.48<br>0.001<br>%<br>Extraction date:<br>04/23/25 11:07:13      | 1.251<br>175.14<br>0.001      | ND<br>ND<br>0.001<br>% | ND<br>ND<br>0.001 | ND<br>ND<br>0.001<br>%                  | 0.083<br>11.62<br>0.001 |
| mg/unit<br>LOD<br>Analyzed by:<br>3335, 1665, 585,<br>Analysis Method<br>Analytical Batch<br>Instrument Used<br>Analyzed Date :<br>Dilution : 400<br>Reagent : 04152<br>Consumables : 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.561<br>78.54<br>0.001<br>%<br>: SOP.T.40.031, SC<br>: DA085688POT<br>4: DA-LC-002<br>04/24/25 08:55:58<br>25.R27; 021125.07;                         | 27.245<br>3814.30<br>0.001<br>% | ND<br>ND<br>0.001<br>% | 0.060<br>8.40<br>0.001<br>%<br>Weight: | 0.031<br>4.34<br>0.001      | 0.132<br>18.48<br>0.001<br>%<br>Extraction date:<br>04/23/25 11:07:13      | 1.251<br>175.14<br>0.001<br>% | ND<br>ND<br>0.001<br>% | ND<br>ND<br>0.001 | ND<br>ND<br>0.001<br>%                  | 0.083<br>11.62<br>0.001 |
| mg/unit<br>LOD<br>Analyzed by:<br>3335, 1665, 585,<br>Analysis Method<br>Analytical Batch<br>Instrument Used<br>Analyzed Date :<br>Dilution : 400<br>Reagent : 04152<br>Consumables : 9<br>Pipette : DA-075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.561<br>78.54<br>0.001<br>%<br>1: SOP.T.40.031, SCC<br>1: DA085688POT<br>1: DA-LC-002<br>04/24/25 08:55:58<br>25.R27; 021125.07;<br>3: TA-108; DA-078 | 27.245<br>3814.30<br>0.001<br>% | ND<br>ND<br>0.001<br>% | 0.060<br>8.40<br>0.001<br>%<br>Weight: | 0.031<br>4.34<br>0.001<br>% | 0.132<br>18.48<br>0.001<br>%<br>Extraction date:<br>04/23/25 11:07:13<br>B | 1.251<br>175.14<br>0.001<br>% | ND<br>ND<br>0.001<br>% | ND<br>ND<br>0.001 | ND<br>ND<br>0.001<br>%                  | 0.083<br>11.62<br>0.001 |

Sunnyside<sup>\*</sup>

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, pp=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

#### **Vivian Celestino** Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164



Signature 04/25/25

# **COMPLIANCE FOR RETAIL**

Revision: #1 This revision supersedes any and all previous versions of this document.



Supply Smalls 14g - Metaverse (S) Metaverse (S) Matrix : Flower Type: Flower-Cured



4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

## **Certificate of Analysis**

PASSED

TESTED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50422014-006 Harvest/Lot ID: 4668816718138241 Batch#: 4668816718138241 Sample Size Received: 3 units Sampled : 04/22/25 Ordered : 04/22/25

Total Amount : 390 units Completed : 04/25/25 Expires: 04/28/26 Sample Method : SOP.T.20.010

Page 2 of 5

| Ô |  |
|---|--|
| 6 |  |

### **Terpenes**

| erpenes           | LOD (%) | Pass/Fail | mg/unit | Result (%) | Terpenes                                                        | LOD (%)           | Pass/Fail           | mg/unit         | Result (%)                          |               |
|-------------------|---------|-----------|---------|------------|-----------------------------------------------------------------|-------------------|---------------------|-----------------|-------------------------------------|---------------|
| TAL TERPENES      | 0.007   | TESTED    | 223.86  | 1.599      | ALPHA-BISABOLOL                                                 | 0.007             | TESTED              | ND              | ND                                  |               |
| TA-CARYOPHYLLENE  | 0.007   | TESTED    | 92.96   | 0.664      | ALPHA-CEDRENE                                                   | 0.005             | TESTED              | ND              | ND                                  |               |
| NALOOL            | 0.007   | TESTED    | 28.98   | 0.207      | ALPHA-PHELLANDRENE                                              | 0.007             | TESTED              | ND              | ND                                  |               |
| PHA-HUMULENE      | 0.007   | TESTED    | 26.88   | 0.192      | ALPHA-PINENE                                                    | 0.007             | TESTED              | ND              | ND                                  |               |
| IONENE            | 0.007   | TESTED    | 25.06   | 0.179      | ALPHA-TERPINENE                                                 | 0.007             | TESTED              | ND              | ND                                  |               |
| RNESENE           | 0.007   | TESTED    | 18.20   | 0.130      | ALPHA-TERPINOLENE                                               | 0.007             | TESTED              | ND              | ND                                  |               |
| TA-MYRCENE        | 0.007   | TESTED    | 17.78   | 0.127      | <br>CIS-NEROLIDOL                                               | 0.003             | TESTED              | ND              | ND                                  |               |
| ANS-NEROLIDOL     | 0.005   | TESTED    | 6.72    | 0.048      | GAMMA-TERPINENE                                                 | 0.007             | TESTED              | ND              | ND                                  |               |
| TA-PINENE         | 0.007   | TESTED    | 4.20    | 0.030      | Analyzed by:                                                    | Weigh             | t:                  | Extract         | ion date:                           | Extracted by: |
| PHA-TERPINEOL     | 0.007   | TESTED    | 3.08    | 0.022      | 4444, 4451, 585, 1440                                           | 1.0758            | Bg                  | 04/23/2         | 15 11:37:29                         | 4444          |
| CARENE            | 0.007   | TESTED    | ND      | ND         | Analysis Method : SOP.T.30.061A.FL, SOP.T.40.061A.FL            |                   |                     |                 |                                     |               |
| RNEOL             | 0.013   | TESTED    | ND      | ND         | Analytical Batch : DA085715TER<br>Instrument Used : DA-GCMS-008 |                   |                     |                 | Batch Date : 04/23/25 10:27:44      |               |
| MPHENE            | 0.007   | TESTED    | ND      | ND         | Analyzed Date : 04/24/25 14:42:32                               |                   |                     |                 | Batch Date : 09/23/25 10:27:44      |               |
| MPHOR             | 0.007   | TESTED    | ND      | ND         | Dilution : 10                                                   |                   |                     |                 |                                     |               |
| RYOPHYLLENE OXIDE | 0.007   | TESTED    | ND      | ND         | Reagent : N/A                                                   |                   |                     |                 |                                     |               |
| DROL              | 0.007   | TESTED    | ND      | ND         | Consumables : N/A                                               |                   |                     |                 |                                     |               |
| CALYPTOL          | 0.007   | TESTED    | ND      | ND         | Pipette : N/A                                                   |                   |                     |                 |                                     |               |
| NCHONE            | 0.007   | TESTED    | ND      | ND         | Terpenoid testing is performed utilizing Gas Chromatography     | Mass Spectrometry | . For all Flower sa | mples, the Tota | Terpenes % is dry-weight corrected. |               |
| NCHYL ALCOHOL     | 0.007   | TESTED    | ND      | ND         |                                                                 |                   |                     |                 |                                     |               |
| RANIOL            | 0.007   | TESTED    | ND      | ND         |                                                                 |                   |                     |                 |                                     |               |
| RANYL ACETATE     | 0.007   | TESTED    | ND      | ND         |                                                                 |                   |                     |                 |                                     |               |
| AIOL              | 0.007   | TESTED    | ND      | ND         |                                                                 |                   |                     |                 |                                     |               |
| XAHYDROTHYMOL     | 0.007   | TESTED    | ND      | ND         |                                                                 |                   |                     |                 |                                     |               |
| DBORNEOL          | 0.007   | TESTED    | ND      | ND         |                                                                 |                   |                     |                 |                                     |               |
| DPULEGOL          | 0.007   | TESTED    | ND      | ND         |                                                                 |                   |                     |                 |                                     |               |
| ROL               | 0.007   | TESTED    | ND      | ND         |                                                                 |                   |                     |                 |                                     |               |
| IMENE             | 0.007   | TESTED    | ND      | ND         |                                                                 |                   |                     |                 |                                     |               |
| LEGONE            | 0.007   | TESTED    | ND      | ND         |                                                                 |                   |                     |                 |                                     |               |
| BINENE            | 0.007   | TESTED    | ND      | ND         |                                                                 |                   |                     |                 |                                     |               |
| BINENE HYDRATE    | 0.007   | TESTED    | ND      | ND         |                                                                 |                   |                     |                 |                                     |               |
| ALENCENE          | 0.007   | TESTED    | ND      | ND         |                                                                 |                   |                     |                 |                                     |               |

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors. **Vivian Celestino** Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

1/2

Signature 04/25/25



Supply Smalls 14g - Metaverse (S) Metaverse (S) Matrix : Flower Type: Flower-Cured



PASSED

PASSED

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

## **Certificate of Analysis**

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50422014-006 Harvest/Lot ID: 4668816718138241

Sampled : 04/22/25 Ordered : 04/22/25

Batch#: 4668816718138241 Sample Size Received: 3 units Total Amount : 390 units Completed : 04/25/25 Expires: 04/28/26 Sample Method : SOP.T.20.010

Page 3 of 5



### **Pesticides**

| esticide                           | LOD   | Units | Action<br>Level | Pass/Fail | Result | Pesticide                                                      |                    | LOD                 | Units                | Action<br>Level | Pass/Fail                | Resu     |
|------------------------------------|-------|-------|-----------------|-----------|--------|----------------------------------------------------------------|--------------------|---------------------|----------------------|-----------------|--------------------------|----------|
| OTAL CONTAMINANT LOAD (PESTICIDES) | 0.010 |       | 5               | PASS      | ND     | OXAMYL                                                         |                    | 0.010               | ppm                  | 0.5             | PASS                     | ND       |
| OTAL DIMETHOMORPH                  | 0.010 |       | 0.2             | PASS      | ND     | PACLOBUTRAZOL                                                  |                    | 0.010               | ppm                  | 0.1             | PASS                     | ND       |
| TAL PERMETHRIN                     | 0.010 | ppm   | 0.1             | PASS      | ND     | PHOSMET                                                        |                    | 0.010               | maa                  | 0.1             | PASS                     | ND       |
| TAL PYRETHRINS                     | 0.010 | P. P. | 0.5             | PASS      | ND     | PIPERONYL BUTOXIDE                                             |                    | 0.010               |                      | 3               | PASS                     | ND       |
| TAL SPINETORAM                     | 0.010 | ppm   | 0.2             | PASS      | ND     |                                                                |                    | 0.010               |                      | 0.1             | PASS                     | ND       |
| TAL SPINOSAD                       | 0.010 | ppm   | 0.1             | PASS      | ND     | PRALLETHRIN                                                    |                    |                     |                      |                 |                          |          |
| AMECTIN B1A                        | 0.010 | ppm   | 0.1             | PASS      | ND     | PROPICONAZOLE                                                  |                    | 0.010               |                      | 0.1             | PASS                     | ND       |
| EPHATE                             | 0.010 | ppm   | 0.1             | PASS      | ND     | PROPOXUR                                                       |                    | 0.010               |                      | 0.1             | PASS                     | ND       |
| EQUINOCYL                          | 0.010 | ppm   | 0.1             | PASS      | ND     | PYRIDABEN                                                      |                    | 0.010               | ppm                  | 0.2             | PASS                     | ND       |
| ETAMIPRID                          | 0.010 | ppm   | 0.1             | PASS      | ND     | SPIROMESIFEN                                                   |                    | 0.010               | ppm                  | 0.1             | PASS                     | ND       |
| DICARB                             | 0.010 | ppm   | 0.1             | PASS      | ND     | SPIROTETRAMAT                                                  |                    | 0.010               | ppm                  | 0.1             | PASS                     | ND       |
| OXYSTROBIN                         | 0.010 | ppm   | 0.1             | PASS      | ND     | SPIROXAMINE                                                    |                    | 0.010               | ppm                  | 0.1             | PASS                     | ND       |
| ENAZATE                            | 0.010 | ppm   | 0.1             | PASS      | ND     | TEBUCONAZOLE                                                   |                    | 0.010               |                      | 0.1             | PASS                     | ND       |
| ENTHRIN                            | 0.010 | ppm   | 0.1             | PASS      | ND     | THIACLOPRID                                                    |                    | 0.010               |                      | 0.1             | PASS                     | ND       |
| SCALID                             | 0.010 | ppm   | 0.1             | PASS      | ND     |                                                                |                    | 0.010               |                      | 0.5             | PASS                     | ND       |
| RBARYL                             | 0.010 | ppm   | 0.5             | PASS      | ND     | THIAMETHOXAM                                                   |                    |                     |                      |                 | PASS                     |          |
| RBOFURAN                           | 0.010 | ppm   | 0.1             | PASS      | ND     | TRIFLOXYSTROBIN                                                |                    | 0.010               |                      | 0.1             |                          | ND       |
| LORANTRANILIPROLE                  | 0.010 | ppm   | 1               | PASS      | ND     | PENTACHLORONITROBENZ                                           | ENE (PCNB) *       | 0.010               |                      | 0.15            | PASS                     | ND       |
| LORMEQUAT CHLORIDE                 | 0.010 | ppm   | 1               | PASS      | ND     | PARATHION-METHYL *                                             |                    | 0.010               |                      | 0.1             | PASS                     | ND       |
| LORPYRIFOS                         | 0.010 | ppm   | 0.1             | PASS      | ND     | CAPTAN *                                                       |                    | 0.070               | ppm                  | 0.7             | PASS                     | ND       |
| DFENTEZINE                         | 0.010 | ppm   | 0.2             | PASS      | ND     | CHLORDANE *                                                    |                    | 0.010               | ppm                  | 0.1             | PASS                     | ND       |
| JMAPHOS                            | 0.010 | ppm   | 0.1             | PASS      | ND     | CHLORFENAPYR *                                                 |                    | 0.010               | ppm                  | 0.1             | PASS                     | ND       |
| MINOZIDE                           | 0.010 | ppm   | 0.1             | PASS      | ND     | CYFLUTHRIN *                                                   |                    | 0.050               | ppm                  | 0.5             | PASS                     | ND       |
| ZINON                              | 0.010 | ppm   | 0.1             | PASS      | ND     | CYPERMETHRIN *                                                 |                    | 0.050               |                      | 0.5             | PASS                     | ND       |
| HLORVOS                            | 0.010 | ppm   | 0.1             | PASS      | ND     |                                                                |                    |                     |                      | 0.5             |                          |          |
| IETHOATE                           | 0.010 | ppm   | 0.1             | PASS      | ND     | Analyzed by:<br>3379, 585, 1440                                | Weight:<br>0.9817g | Extraction 04/22/25 | on date:<br>11:39:41 |                 | Extracted 1<br>3621.3379 | by:      |
| HOPROPHOS                          | 0.010 | ppm   | 0.1             | PASS      | ND     | Analysis Method : SOP.T.30                                     |                    |                     | 11.39.41             |                 | 5021,5579                |          |
| DFENPROX                           | 0.010 | ppm   | 0.1             | PASS      | ND     | Analytical Batch : DA08570                                     |                    | 02.1 L              |                      |                 |                          |          |
| DXAZOLE                            | 0.010 | ppm   | 0.1             | PASS      | ND     | Instrument Used : DA-LCMS                                      |                    |                     | Batcl                | h Date :04/23   | /25 09:49:51             |          |
| NHEXAMID                           | 0.010 | ppm   | 0.1             | PASS      | ND     | Analyzed Date :04/24/25 1                                      | 4:19:35            |                     |                      |                 |                          |          |
| NOXYCARB                           | 0.010 | ppm   | 0.1             | PASS      | ND     | Dilution: 250                                                  |                    |                     |                      |                 |                          |          |
| NPYROXIMATE                        | 0.010 | ppm   | 0.1             | PASS      | ND     | Reagent: 042125.R02; 041                                       |                    | 01; 042225.RO       | 3; 012925.R          | 01; 041625.R    | 01; 081023.01            |          |
| PRONIL                             | 0.010 | ppm   | 0.1             | PASS      | ND     | Consumables : 6822423-02                                       |                    |                     |                      |                 |                          |          |
| ONICAMID                           | 0.010 | ppm   | 0.1             | PASS      | ND     | Pipette : DA-093; DA-094; [                                    |                    | a Linuid Chara      | t T                  | niala Ouradaura | la Mara Caratas          |          |
| UDIOXONIL                          | 0.010 | ppm   | 0.1             | PASS      | ND     | Testing for agricultural agent<br>accordance with F.S. Rule 64 |                    | ig Liquid Chron     | iacograpny i         | ripie-Quadrupo  | ne mass spectro          | metry in |
| XYTHIAZOX                          | 0.010 | ppm   | 0.1             | PASS      | ND     | Analyzed by:                                                   | Weight:            | Extractio           | n date:              |                 | Extracted b              | v:       |
| AZALIL                             | 0.010 | ppm   | 0.1             | PASS      | ND     | 450, 585, 1440                                                 | 0.9817g            | 04/23/25            |                      |                 | 3621,3379                |          |
| DACLOPRID                          | 0.010 | ppm   | 0.4             | PASS      | ND     | Analysis Method : SOP.T.30                                     |                    |                     |                      |                 |                          |          |
| ESOXIM-METHYL                      | 0.010 | ppm   | 0.1             | PASS      | ND     | Analytical Batch : DA08570                                     |                    |                     |                      |                 |                          |          |
| LATHION                            | 0.010 | ppm   | 0.2             | PASS      | ND     | Instrument Used : DA-GCM                                       |                    |                     | Batch D              | ate:04/23/25    | 09:52:58                 |          |
| TALAXYL                            | 0.010 | ppm   | 0.1             | PASS      | ND     | Analyzed Date :04/24/25 1                                      | 0:06:22            |                     |                      |                 |                          |          |
| THIOCARB                           | 0.010 |       | 0.1             | PASS      | ND     | Dilution : 250                                                 | 000 01 040005 500  |                     |                      |                 |                          |          |
| THOMYL                             | 0.010 |       | 0.1             | PASS      | ND     | Reagent : 042125.R01; 081<br>Consumables : 6822423-02          |                    |                     |                      |                 |                          |          |
| VINPHOS                            | 0.010 |       | 0.1             | PASS      | ND     | Pipette : DA-080; DA-146; [                                    |                    | 12001               |                      |                 |                          |          |
| YCLOBUTANIL                        | 0.010 |       | 0.1             | PASS      | ND     | Testing for agricultural agent                                 |                    | ng Gas Chromat      | tography Trir        | ole-Ouadrupole  | Mass Spectrom            | etry in  |
|                                    |       | ppm   | 0.25            | PASS      | ND     | accordance with F.S. Rule 64                                   |                    | ig ous chioffia     | coarabity title      | sic quuurupule  | mass spectronne          | y 111    |

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

#### **Vivian Celestino** Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 04/25/25

#### Revision: #1 This revision supersedes any and all previous versions of this document.



Supply Smalls 14g - Metaverse (S) Metaverse (S) Matrix : Flower Type: Flower-Cured



4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

## **Certificate of Analysis**

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Julio.Chavez@crescolabs.com Sample : DA50422014-006 Harvest/Lot ID: 4668816718138241 Batch# : 4668816718138241 Sampled : 04/22/25 Total Amount : 390 units

Ordered: 04/22/25 Comple Sample

Total Amount : 390 units Completed : 04/25/25 Expires: 04/28/26 Sample Method : SOP.T.20.010 Page 4 of 5

| (Jes                                                              | Micro                                                                                            | bial                                            |                             |                            | PAS                         | SED             | သို့                                                                               | Мус                      | otoxi                     | ns                              |                   |             | PAS                    | SED             |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------|----------------------------|-----------------------------|-----------------|------------------------------------------------------------------------------------|--------------------------|---------------------------|---------------------------------|-------------------|-------------|------------------------|-----------------|
| Analyte                                                           |                                                                                                  | LOI                                             | D Units                     | Result                     | Pass /<br>Fail              | Action<br>Level | Analyte                                                                            |                          |                           | LOD                             | Units             | Result      | Pass /<br>Fail         | Action<br>Level |
| ASPERGILLU                                                        | S TERREUS                                                                                        |                                                 |                             | Not Present                | PASS                        | 20101           | AFLATOXIN                                                                          | 32                       |                           | 0.002                           | ppm               | ND          | PASS                   | 0.02            |
| ASPERGILLU                                                        | S NIGER                                                                                          |                                                 |                             | Not Present                | PASS                        |                 | AFLATOXIN                                                                          | 31                       |                           | 0.002                           | ppm               | ND          | PASS                   | 0.02            |
|                                                                   | S FUMIGATUS                                                                                      |                                                 |                             | Not Present                | PASS                        |                 | OCHRATOXI                                                                          |                          |                           | 0.002                           | ppm               | ND          | PASS                   | 0.02            |
| ASPERGILLU                                                        |                                                                                                  | -                                               |                             | Not Present                | PASS<br>PASS                |                 | AFLATOXIN                                                                          |                          |                           | 0.002                           |                   | ND          | PASS<br>PASS           | 0.02            |
| ECOLI SHIGE                                                       | A SPECIFIC GEN                                                                                   | E                                               |                             | Not Present<br>Not Present | PASS                        |                 | AFLATOXIN                                                                          | 32                       |                           | 0.002                           |                   | ND          |                        | 0.02            |
| TOTAL YEAS                                                        |                                                                                                  | 10                                              | CFU/g                       | <10                        | PASS                        | 100000          | Analyzed by:<br>3621, 3379, 58                                                     | 5, 1440                  | <b>Weight:</b><br>0.9817g | Extraction<br>04/23/25          |                   |             | Extracted<br>3621,337  |                 |
| Analyzed by:<br>4892, 4520, 58                                    | 5. 1440                                                                                          | Weight:<br>1.1015a                              | Extraction 0<br>04/23/25 10 |                            | Extracted<br>4520.404       |                 | Analysis Metho<br>Analytical Bato                                                  |                          |                           | .40.102.FL                      |                   |             |                        |                 |
| Analysis Metho                                                    | od : SOP.T.40.056                                                                                | C, SOP.T.40.                                    |                             |                            | 1020,101                    |                 | Instrument Us<br>Analyzed Date                                                     | ed:DA-LCMS               | -005 (MYC)                | Ba                              | atch Date         | :04/23/2    | 5 09:52:5              | 2               |
| Instrument Use<br>2720 Thermoc<br>(95*C) DA-049<br>Analyzed Date  | ch : DA085680MIC<br>ed : PathogenDx 9<br>ycler DA-010,Fish<br>,DA-402 Thermo<br>: 04/24/25 10:12 | Scanner DA-1<br>ner Scientific<br>Scientific He | Isotemp Heat                | Block 07:                  | <b>ch Date :</b> 0<br>29:20 | 4/23/25         | Dilution : 250<br>Reagent : 042<br>081023.01<br>Consumables :<br>Pipette : DA-0    | 6822423-02               |                           | 125.R01; 0422                   | 25.R03; 0         | )12925.R0   | 1; 041625              | 5.R01;          |
| Dilution : 10<br>Reagent : 0226<br>Consumables :<br>Pipette : N/A | 525.41; 022625.6<br>7581001004                                                                   | 0; 031525.R                                     | 03; 072424.1                | D                          |                             |                 |                                                                                    | ing utilizing Lic        | juid Chromatogr           | aphy with Triple                | Quadrupo          | le Mass Spe | ectrometry             | in              |
| Analyzed by:<br>4892, 4520, 58                                    | 5, 1440                                                                                          | Weight:<br>1.1015g                              | Extraction c<br>04/23/25 10 |                            | Extracted<br>4520,404       |                 | Hg                                                                                 | Hear                     | vy Me                     | tals                            |                   |             | PAS                    | SED             |
| Analytical Batc<br>Instrument Use<br>DA-382]                      | od : SOP.T.40.209<br>h : DA085681TYM<br>ed : Incubator (25                                       | 4<br>*C) DA- 328                                | [calibrated w               | th Batch Dat               | t <b>e :</b> 04/23/2        | 25 07:30:38     | Metal                                                                              |                          | OAD METALS                | LOD<br>0.080                    | <b>Units</b>      | Result      | Pass /<br>Fail<br>PASS | Action<br>Level |
|                                                                   | : 04/25/25 12:58                                                                                 | :27                                             |                             |                            |                             |                 | ARSENIC                                                                            |                          |                           | 0.020                           | ppm               | ND          | PASS                   | 0.2             |
| Dilution : 10<br>Reagent : 0226                                   | 525.41; 022625.6                                                                                 | 0: 022625 R                                     | 53                          |                            |                             |                 | CADMIUM                                                                            |                          |                           | 0.020                           | ppm               | ND          | PASS                   | 0.2             |
| Consumables :                                                     |                                                                                                  | 0, 02202011                                     |                             |                            |                             |                 | MERCURY                                                                            |                          |                           | 0.020                           | ppm               | ND          | PASS                   | 0.2             |
| Pipette : N/A                                                     |                                                                                                  |                                                 |                             |                            |                             |                 | LEAD                                                                               |                          |                           | 0.020                           | ppm               | ND          | PASS                   | 0.5             |
|                                                                   | mold testing is perf<br>F.S. Rule 64ER20-3                                                       |                                                 | MPN and tradi               | tional culture base        | d techniques                | s in            | Analyzed by:<br>1022, 585, 144                                                     |                          | Weight:<br>0.2951g        | Extraction dat<br>04/23/25 09:5 |                   |             | Extracted<br>4531      | by:             |
|                                                                   |                                                                                                  |                                                 |                             |                            |                             |                 | Analysis Metho<br>Analytical Bato<br>Instrument Us<br>Analyzed Date                | h:DA08569<br>ed:DA-ICPMS | 0HEA<br>5-004             |                                 | <b>h Date :</b> ( | )4/23/25 0  | 8:24:11                |                 |
|                                                                   |                                                                                                  |                                                 |                             |                            |                             |                 | Dilution : 50<br>Reagent : 041<br>120324.07; 04<br>Consumables :<br>Pipette : DA-0 | 1025.R11<br>040724CH01   | L; J609879-019            | 125.R20; 0421<br>93; 179436     | 25.R17; 0         | 042125.R1   | 8; 042125              | 5.R19;          |

 Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

### Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

1/2

Signature 04/25/25



Page 5 of 5

. . . . . . . . . . . . Supply Smalls 14g - Metaverse (S) Metaverse (S) Matrix : Flower Type: Flower-Cured



4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Filth/Foreign

Water Activity

**Material** 

### **Certificate of Analysis**

### PASSED

Sunnyside

20°

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Julio Chavez@crescolabs.com Sample : DA50422014-006 Harvest/Lot ID: 4668816718138241 Batch#: 4668816718138241 Sample Size Received: 3 units Sampled : 04/22/25

Total Amount : 390 units Ordered : 04/22/25

PASSED

PASSED

Completed : 04/25/25 Expires: 04/28/26 Sample Method : SOP.T.20.010

 $( \cup$ 



Moisture

PASSED

Action Level

| Analyte<br>Filth and Foreign M                                                                     | laterial                    | <b>LOD</b><br>0.100 | Units<br>%                        | <b>Result</b><br>ND | P/F<br>PASS         | Action Level            | Analyte<br>Moisture Content                                                                                             | <b>LOD</b><br>1.0       | <b>Units</b><br>% | Result<br>11.9         | P/F<br>PASS | Action Le<br>15       |
|----------------------------------------------------------------------------------------------------|-----------------------------|---------------------|-----------------------------------|---------------------|---------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------|------------------------|-------------|-----------------------|
| Analyzed by:<br>1879, 585, 1440                                                                    | Weight:<br>lg               |                     | r <b>action dat</b><br>23/25 10:3 |                     | <b>Ext</b><br>187   | <b>racted by:</b><br>79 | Analyzed by:<br>4797, 585, 4571, 1440                                                                                   | Weight:<br>0.5g         |                   | on date:<br>5 10:40:26 |             | Extracted by:<br>4797 |
| Analysis Method : SOF<br>Analytical Batch : DAC<br>Instrument Used : Filt<br>Analyzed Date : 04/23 | 85713FIL<br>n/Foreign Mater | ial Micro           | oscope                            | Batch I             | <b>Date :</b> 04/23 | 8/25 10:24:15           | Analysis Method : SOP.T.40.<br>Analytical Batch : DA085699<br>Instrument Used : DA-003 M<br>Analyzed Date : 04/24/25 14 | MOI<br>oisture Analyzer |                   | Batch Date             | e:04/23/    | 25 09:32:16           |
| Dilution : N/A<br>Reagent : N/A<br>Consumables : N/A<br>Pipette : N/A                              |                             |                     |                                   |                     |                     |                         | Dilution : N/A<br>Reagent : 092520.50; 03012<br>Consumables : N/A<br>Pipette : DA-066                                   | 25.01                   |                   |                        |             |                       |
| Filth and foreign materia technologies in accordar                                                 |                             |                     |                                   | pection utiliz      | ing naked eye       | e and microscope        | Moisture Content analysis utilizi                                                                                       | ing loss-on-drying t    | echnology         | in accordance          | with F.S. R | ule 64ER20-39.        |

| Analyte<br>Water Activity                                                                          | -                            | L <b>OD Units</b><br>D.010 aw | <b>Result</b> 0.537 | P/F<br>PASS           | Action Level<br>0.65 |  |  |  |
|----------------------------------------------------------------------------------------------------|------------------------------|-------------------------------|---------------------|-----------------------|----------------------|--|--|--|
| Analyzed by:<br>4797, 585, 1440                                                                    | Weight:<br>1.681g            | Extraction<br>04/23/25        |                     | Extracted by:<br>4797 |                      |  |  |  |
| Analysis Method : SOP<br>Analytical Batch : DAO<br>Instrument Used : DA-<br>Analyzed Date : 04/24/ | 85711WAT<br>028 Rotronic Hyg | gropalm                       | Batch Da            | <b>te :</b> 04/23/    | 25 10:05:45          |  |  |  |
| Dilution : N/A<br>Reagent : 101724.36<br>Consumables : PS-14<br>Pipette : N/A                      |                              |                               |                     |                       |                      |  |  |  |

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, pp=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

**Vivian Celestino** Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 04/25/25