

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664 Kaycha Labs

Supply Smalls 14g - Red Pop (I) Red Pop (I) Matrix: Flower Classification: High THC Type: Flower-Cured

COM	PLIA	fica NCE FOI e ID: DA5040	R RETA		۹na	lys	is	Cultivatio	Harvest/ on Facilit	/Lot ID: 8091 Batch#: 809 y: FL - India ility: FL - India Sale#: 7121	ther - Not Listed 1629898689600 1629898689600 1629898689600 1629898689600 16430 1640000
	Inter								Re Re	Total Ame tail Product tail Serving Ord Sam Compl	ceived: 3 units ount: 411 units t Size: 14 gram J Size: 14 gram Servings: 1 lered: 04/04/25 opled: 04/04/25 leted: 04/08/25 d: SOP.T.20.010
Apr 08, 22205 Sw Ma indiantown, R	artin Hwy	Sunnysid	е		Sı	JNN	ysic	le [*]	Page	es 1 of 5	PASSED
SAFETY RE	SULTS										MISC.
R O		Hg	Ċ,	2	گ	Ä			$\tilde{\mathcal{O}}$		Ô
Pesticid PASSE		eavy Metals PASSED	Microbials PASSED	Mycot PAS	SED	Residuals Solvents OT TESTED	Filth PASSED	Water A PASS	,	Moisture PASSED	Terpenes TESTED
Ä	Canna	binoid									TESTED
	3 1	al THC 9.1569			3 0.	al CBD 039% CBD/Container	-		322	Cannabinoid 3809 Innabinoids/Cor	ls 6 ntainer : 3133.200
%	D9-ТНС 0,559	тнса 21,206	CBD ND	CBDA 0.045	D8-ТНС ND	свс 0,084	CBGA 0.452	CBN ND	тнсv ND	CBDV	свс 0.034
mg/unit	78.26	2968.84	ND	6.30	ND	11.76	63.28	ND	ND	ND	4.76
LOD	0.001 %	0.001 %	%	0.001 %	0.001 %	0.001 %	0.001 %	0.001 %	0.001 %	0.001 %	0.001 %
Analyzed by: 3335, 1665, 585,	1440			Weight: 0.211g		Extraction date: 04/07/25 12:26:32	2			Extracted by: 3335	
Analysis Method : Analytical Batch : Instrument Used : Analyzed Date : 0	SOP.T.40.031 DA085126P0 DA-LC-001	Г		*9			Batch Date : 04/07/25	08:08:36			
Pipette : DA-079;	7.110; 043121 DA-108; DA-0	11; 062224CH01; 0000				Dula CAEDOO DO					

Label Claim

PASSED

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 04/08/25

..... Supply Smalls 14g - Red Pop (I) Red Pop (I) Matrix : Flower Type: Flower-Cured

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

PASSED

TESTED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50404003-004 Harvest/Lot ID: 8091629898689600 Batch#: 8091629898689600 Sample Size Received: 3 units Sampled : 04/04/25 Ordered : 04/04/25

Total Amount : 411 units Completed : 04/08/25 Expires: 04/08/26 Sample Method : SOP.T.20.010

Page 2 of 5

Ô	
-0-	

Terpenes

Terpenes	LOD (%)	Pass/Fail	mg/unit	Result (%)		Terpenes	LOD (%)	Pass/Fail	mg/unit	Result (%)	
OTAL TERPENES	0.007	TESTED	264.46	1.889		VALENCENE	0.007	TESTED	ND	ND	
ETA-CARYOPHYLLENE	0.007	TESTED	72.80	0.520		ALPHA-BISABOLOL	0.007	TESTED	ND	ND	
IMONENE	0.007	TESTED	69.30	0.495		ALPHA-CEDRENE	0.005	TESTED	ND	ND	
LPHA-HUMULENE	0.007	TESTED	22.68	0.162		ALPHA-PHELLANDRENE	0.007	TESTED	ND	ND	
CIMENE	0.007	TESTED	18.34	0.131		ALPHA-TERPINENE	0.007	TESTED	ND	ND	
NALOOL	0.007	TESTED	17.36	0.124		ALPHA-TERPINOLENE	0.007	TESTED	ND	ND	
ETA-MYRCENE	0.007	TESTED	17.36	0.124		CIS-NEROLIDOL	0.003	TESTED	ND	ND	
LPHA-PINENE	0.007	TESTED	15.40	0.110		GAMMA-TERPINENE	0.007	TESTED	ND	ND	
ETA-PINENE	0.007	TESTED	13.44	0.096		Analyzed by:	Weight	tı	Extracti	on date:	Extracted by:
LPHA-TERPINEOL	0.007	TESTED	7.28	0.052	1	4444, 4451, 585, 1440	1.0477	'g	04/05/2	5 14:44:50	4444
INCHYL ALCOHOL	0.007	TESTED	5.46	0.039	1	Analysis Method : SOP.T.30.061A.FL, SOP.T.40.061A	A.FL				
RANS-NEROLIDOL	0.005	TESTED	5.04	0.036	i i	Analytical Batch : DA085084TER Instrument Used : DA-GCMS-008				Batch Date : 04/05/25 3	1-16-10
CARENE	0.007	TESTED	ND	ND		Analyzed Date : 04/08/25 10:48:04				Date: Date 104/03/23 1	
DRNEOL	0.013	TESTED	ND	ND		Dilution : 10					
MPHENE	0.007	TESTED	ND	ND		Reagent : 022525.49					
AMPHOR	0.007	TESTED	ND	ND		Consumables : 947.110; 04402004; 2240626; 0000 Pipette : DA-065	1355309				
RYOPHYLLENE OXIDE	0.007	TESTED	ND	ND							
DROL	0.007	TESTED	ND	ND		Terpenoid testing is performed utilizing Gas Chromatograp	phy Mass Spectrometry	. For all Flower sa	mples, the Total	Terpenes % is dry-weight correc	ted.
ICALYPTOL	0.007	TESTED	ND	ND							
ARNESENE	0.007	TESTED	ND	ND							
INCHONE	0.007	TESTED	ND	ND							
RANIOL	0.007	TESTED	ND	ND							
ERANYL ACETATE	0.007	TESTED	ND	ND							
UAIOL	0.007	TESTED	ND	ND							
EXAHYDROTHYMOL	0.007	TESTED	ND	ND							
OBORNEOL	0.007	TESTED	ND	ND							
SOPULEGOL	0.007	TESTED	ND	ND							
EROL	0.007	TESTED	ND	ND							
ULEGONE	0.007	TESTED	ND	ND							
ABINENE	0.007	TESTED	ND	ND							
SABINENE HYDRATE	0.007	TESTED	ND	ND							

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 04/08/25

. Supply Smalls 14g - Red Pop (I) Red Pop (I) Matrix : Flower Type: Flower-Cured

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com

Sample : DA50404003-004 Harvest/Lot ID: 8091629898689600

Sampled : 04/04/25 Ordered : 04/04/25

Batch#: 8091629898689600 Sample Size Received: 3 units Total Amount : 411 units Completed : 04/08/25 Expires: 04/08/26 Sample Method : SOP.T.20.010

Page 3 of 5

Pesticides

Pesticide	LOD	Units	Action Level	Pass/Fail	Result	Pesticide		LOD	Units	Action Level	Pass/Fail	Result
TOTAL CONTAMINANT LOAD (PESTICIDES)	0.010) ppm	5	PASS	ND	OXAMYL		0.010	ppm	0.5	PASS	ND
TOTAL DIMETHOMORPH	0.010) ppm	0.2	PASS	ND	PACLOBUTRAZOL		0.010	maa	0.1	PASS	ND
TOTAL PERMETHRIN	0.010) ppm	0.1	PASS	ND	PHOSMET		0.010	ppm	0.1	PASS	ND
TOTAL PYRETHRINS	0.010) ppm	0.5	PASS	ND	PIPERONYL BUTOXIDE		0.010		3	PASS	ND
TOTAL SPINETORAM	0.010) ppm	0.2	PASS	ND			0.010		0.1	PASS	ND
TOTAL SPINOSAD	0.010) ppm	0.1	PASS	ND	PRALLETHRIN						
ABAMECTIN B1A	0.010) ppm	0.1	PASS	ND	PROPICONAZOLE		0.010		0.1	PASS	ND
ACEPHATE	0.010) ppm	0.1	PASS	ND	PROPOXUR		0.010	ppm	0.1	PASS	ND
ACEQUINOCYL	0.010) ppm	0.1	PASS	ND	PYRIDABEN		0.010	ppm	0.2	PASS	ND
ACETAMIPRID	0.010) ppm	0.1	PASS	ND	SPIROMESIFEN		0.010	ppm	0.1	PASS	ND
ALDICARB	0.010) ppm	0.1	PASS	ND	SPIROTETRAMAT		0.010	ppm	0.1	PASS	ND
AZOXYSTROBIN	0.010) ppm	0.1	PASS	ND	SPIROXAMINE		0.010	ppm	0.1	PASS	ND
BIFENAZATE	0.010) ppm	0.1	PASS	ND	TEBUCONAZOLE		0.010	maa	0.1	PASS	ND
BIFENTHRIN	0.010) ppm	0.1	PASS	ND	THIACLOPRID		0.010		0.1	PASS	ND
BOSCALID	0.010) ppm	0.1	PASS	ND	THIAMETHOXAM		0.010		0.5	PASS	ND
CARBARYL) ppm	0.5	PASS	ND			0.010		0.1	PASS	ND
CARBOFURAN) ppm	0.1	PASS	ND	TRIFLOXYSTROBIN						ND
CHLORANTRANILIPROLE	0.010) ppm	1	PASS	ND	PENTACHLORONITROBENZENE	(PCNB) *	0.010		0.15	PASS	
CHLORMEQUAT CHLORIDE	0.010) ppm	1	PASS	ND	PARATHION-METHYL *		0.010		0.1	PASS	ND
CHLORPYRIFOS	0.010) ppm	0.1	PASS	ND	CAPTAN *		0.070	ppm	0.7	PASS	ND
CLOFENTEZINE	0.010) ppm	0.2	PASS	ND	CHLORDANE *		0.010	ppm	0.1	PASS	ND
COUMAPHOS) ppm	0.1	PASS	ND	CHLORFENAPYR *		0.010	ppm	0.1	PASS	ND
DAMINOZIDE) ppm	0.1	PASS	ND	CYFLUTHRIN *		0.050	ppm	0.5	PASS	ND
DIAZINON	0.010) ppm	0.1	PASS	ND	CYPERMETHRIN *		0.050	ppm	0.5	PASS	ND
DICHLORVOS) ppm	0.1	PASS	ND	Analyzed by:	Weight:	Extrac	tion date:		Extracte	d by:
DIMETHOATE) ppm	0.1	PASS	ND	3621, 585, 1440	0.9349a		25 14:15:49		450	a by:
ETHOPROPHOS) ppm	0.1	PASS	ND	Analysis Method : SOP.T.30.102	.FL, SOP.T.40.102.F	L				
ETOFENPROX) ppm	0.1	PASS	ND	Analytical Batch : DA085093PES						
ETOXAZOLE) ppm	0.1	PASS	ND	Instrument Used : DA-LCMS-004			Batch	Date :04/05/	25 11:42:28	
FENHEXAMID) ppm	0.1	PASS	ND	Analyzed Date :04/08/25 10:46	:15					
FENOXYCARB) ppm	0.1	PASS	ND	Dilution: 250	01					
FENPYROXIMATE) ppm	0.1	PASS	ND	Reagent: 040525.R05; 081023. Consumables: 040724CH01; 22						
FIPRONIL) ppm	0.1	PASS	ND	Pipette : N/A	102100					
FLONICAMID) ppm	0.1	PASS	ND	Testing for agricultural agents is p	erformed utilizina Lia	uid Chron	natography Tr	iple-Ouadrupo	e Mass Spectror	metry in
FLUDIOXONIL) ppm	0.1	PASS	ND	accordance with F.S. Rule 64ER20						
HEXYTHIAZOX) ppm	0.1	PASS	ND	Analyzed by:	Weight:	Extract	ion date:		Extracte	d by:
IMAZALIL) ppm	0.1	PASS	ND	450, 585, 1440	0.9349g		5 14:15:49		450	
IMIDACLOPRID) ppm	0.4	PASS	ND	Analysis Method : SOP.T.30.151		FL				
KRESOXIM-METHYL) ppm	0.1	PASS	ND	Analytical Batch : DA085094V0 Instrument Used : DA-GCMS-011			Potch Do	te:04/05/25	11.42.22	
MALATHION) ppm	0.2	PASS	ND	Analyzed Date :04/08/25 10:41:			Dattri Da	ite :04/03/23	11.43.32	
METALAXYL) ppm	0.1	PASS	ND	Dilution : 250						
METHIOCARB) ppm	0.1	PASS	ND	Reagent : 040525.R05; 081023.	01; 040225.R32; 04	0225.R33				
METHOMYL) ppm	0.1	PASS	ND	Consumables : 040724CH01; 22	21021DD; 17473601					
MEVINPHOS) ppm	0.1	PASS	ND	Pipette : DA-080; DA-146; DA-22						
MYCLOBUTANIL) ppm	0.1	PASS	ND	Testing for agricultural agents is p		is Chromai	tography Tripl	e-Quadrupole	Mass Spectrome	etry in
NALED	0.010) ppm	0.25	PASS	ND	accordance with F.S. Rule 64ER20	-39.					

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 04/08/25

PASSED

PASSED

..... Supply Smalls 14g - Red Pop (I) Red Pop (I) Matrix : Flower Type: Flower-Cured

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

PASSED

S	 n	n	v	c	i,	d	0

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50404003-004 Harvest/Lot ID: 8091629898689600

Sampled : 04/04/25 Ordered : 04/04/25

Batch#: 8091629898689600 Sample Size Received: 3 units Total Amount : 411 units Completed : 04/08/25 Expires: 04/08/26 Sample Method : SOP.T.20.010

Pad	Δ	Δ	of	5
i ug	C			5

(F	Microbia	al			PASS	ED	ۍ¢	Мус	otoxi	ins			PAS	SED
Analyte		LOD	Units	Result		ction .evel	Analyte			LOD	Units	Result	Pass / Fail	Action Level
ASPERGILLU	S TERREUS			Not Presen			AFLATOXIN	B2		0.002	ppm	ND	PASS	0.02
ASPERGILLU	S NIGER			Not Presen	t PASS		AFLATOXIN	B1		0.002	ppm	ND	PASS	0.02
ASPERGILLU	S FUMIGATUS			Not Presen	t PASS		OCHRATOXI	A N		0.002	ppm	ND	PASS	0.02
ASPERGILLU	S FLAVUS			Not Presen	t PASS		AFLATOXIN	G1		0.002	ppm	ND	PASS	0.02
SALMONELL	A SPECIFIC GENE			Not Presen	t PASS		AFLATOXIN	G2		0.002	ppm	ND	PASS	0.02
ECOLI SHIGE	LLA			Not Presen	t PASS		Analyzed by:		Weight:	Extraction da	to		Extracted	l by
TOTAL YEAS	T AND MOLD	10	CFU/g	370	PASS 10	00000	3621, 585, 144	10	0.9349g	04/07/25 14:			450	i by.
Analyzed by: 520, 585, 144	Weight: 0 0.814g		ction date: 5/25 10:14:30)	Extracted by: 4520,4044		Analysis Metho Analytical Bato			T.40.102.FL				
Analysis Metho	d : SOP.T.40.056C, SO h : DA085064MIC				1020,1011		Instrument Us Analyzed Date	ed : DA-LCMS	-004 (MYC)	B	atch Date	:04/05/25	5 11:47:0	1
Dilution: 10	: 04/08/25 10:36:51 225.10; 021725.26; 031 7581001067	1525.R03	; 101624.14				Pipette : N/A Mycotoxins test accordance wit			graphy with Triple	Quadrupo	le Mass Spe	ectrometry	in
Analyzed by: 1520, 4892, 58	Weig 5, 1440 0.81		Extraction da 04/05/25 10:1		Extracted by: 4520,4044		Hg	Hear	vy Me	etals			PAS	SEC
Analytical Bate	d: SOP.T.40.209.FL h: DA085065TYM ed: Incubator (25*C) D	Δ- 328 [c;	alibrated with	Batch D	ate:04/05/2507	7.24.07	Metal			LOD	Units	Result	Pass / Fail	Action Level
DA-382]		020100		Dutting		12 1107	TOTAL CONT	AMINANT L	DAD METAL	S 0.080	ppm	ND	PASS	1.1
nalyzed Date	:04/08/25 09:29:51						ARSENIC			0.020	ppm	<0.100		0.2
ilution: 10							CADMIUM			0.020	ppm	ND	PASS	0.2
	25.10; 021725.26; 031	1525.R03	; 101624.14				MERCURY			0.020	ppm	ND	PASS	0.2
consumables : Pipette : N/A	N/A						LEAD			0.020	ppm	ND	PASS	0.5
fotal yeast and	mold testing is performed	utilizing M	PN and traditio	onal culture bas	sed techniques in		Analyzed by: 1022, 585, 144		Veight:).2691g	Extraction date 04/05/25 15:2			ctracted k 022,1879	y:
ccordance with	F.S. Rule 64ER20-39.						Analysis Metho Analytical Bato Instrument Us Analyzed Date	ch : DA08508 ed : DA-ICPMS	0HEA 5-004		h Date : ()4/05/25 1	0:50:06	
							Dilution : 50	525.R31; 031 33125.R16 040724CH03	725.R14; 033	3125.R19; 0325 193; 179436	25.R30; 0)33125.R1	7; 03312	5.R18;

Pipette : DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 04/08/25

Supply Smalls 14g - Red Pop (I) Red Pop (I) Matrix : Flower Type: Flower-Cured

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50404003-004 Harvest/Lot ID: 8091629898689600

Sampled : 04/04/25 Ordered : 04/04/25

Batch#: 8091629898689600 Sample Size Received: 3 units Total Amount : 411 units Completed : 04/08/25 Expires: 04/08/26 Sample Method : SOP.T.20.010

Page 5 of 5

Filth/Foreign Material

PA	SS	ED

Analyte Filth and Foreign	Material	LOD 0.100	Units)%	Result ND	P/F PASS	Action Level	Analyte Moisture Content	LOD 1.0	Units %	Result 11.6	P/F PASS	Action Level
Analyzed by: 1879, 585, 1440	Weight: 1g		raction dat 07/25 16:1		Ext 187	racted by: 79	Analyzed by: 4797, 3379, 585, 1440	Weight: 0.502g	Extracti 04/05/2	on date: 5 14:00:20		xtracted by: 797,1879
Analysis Method : SO Analytical Batch : DA Instrument Used : Fi Analyzed Date : 04/0	A085133FIL Ith/Foreign Mate	rial Micr	oscope	Batch D)ate : 04/07	//25 08:57:10	Analysis Method : SOP.T.40.02 Analytical Batch : DA085085MC Instrument Used : DA-003 Mois Analyzed Date : 04/08/25 09:22)I ture Analyzei	r	Batch Dat	e:04/05/2	25 11:17:01
Dilution : N/A Reagent : N/A Consumables : N/A Pipette : N/A							Dilution : N/A Reagent : 092520.50; 030125.0 Consumables : N/A Pipette : DA-066	01				
Filth and foreign mater technologies in accord				pection utilizi	ng naked eye	e and microscope	Moisture Content analysis utilizing	loss-on-drying	technology	in accordance	with F.S. Ru	ule 64ER20-39.
	Nater A	ctiv	vity		PA	SSED						

Analyte Water Activity	LOD 0.010	Units aw	Result 0.487	P/F PASS	Action Level 0.65
Analyzed by: 4797, 3379, 585, 1440	Weight: 2.189g	Extraction 04/05/25			acted by: 7,1879,585
Analysis Method : SOP.T.40 Analytical Batch : DA08508 Instrument Used : DA-028 Analyzed Date : 04/08/25 0	37WAT Rotronic Hygropa	lm	Batch Da	te : 04/05/	25 11:19:06
Dilution : N/A Reagent : 101724.36 Consumables : PS-14					

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 04/08/25