

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Kaycha Labs

Sunnyside Chews 100mg 10pk Sour Pineapple Sour Pineapple

Matrix: Edible Classification: High THC Type: Soft Chew

Production Method: Other - Not Listed

Source Facility: FL - Indiantown (4430) Seed to Sale#: 3809012651676261

Retail Product Size: 42.3695 gram Retail Serving Size: 4.1 gram

Sampling Method: SOP.T.20.010

Pages 1 of 5

Cultivation Facility: FL - Indiantown (4430)

Processing Facility : FL - Indiantown (4430)

Harvest/Lot ID: 6871959701449665

Batch#: 6871959701449665

Harvest Date: 04/02/25 Sample Size Received: 12 units Total Amount: 2285 units

Servings: 10

Ordered: 04/04/25 Sampled: 04/04/25 Completed: 04/08/25

PASSED

Certificate of Analysis

COMPLIANCE FOR RETAIL

Laboratory Sample ID: DA50404003-001

Apr 08, 2025 | Sunnyside 22205 Sw Martin Hwy

indiantown, FL, 34956, US

SAFETY	RESULTS

										MISC.
[Hg	Ċ\$	şç	D	Ä			\bigcirc		Ô
		Microbials PASSED		D	Solvents	Filth PASSED			Moisture NOT TESTED	Terpenes NOT TESTED
Cannabi	inoid									TESTED
) 0.2	244%) : 103.382 mg) NI	D	: 0.000 mg]0.	250%	
D9-THC	тнса	CBD	CBDA	D8-THC	CBG	CBGA	CBN	тнсу		свс 0.004
103.38	ND	ND	ND	ND	0.85	ND	ND	ND	ND	1.69
0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
% 1440	%	%	% Weight: 3.0655g	%	Extraction date:		%	%	% Extracted by: 3335	%
SOP.T.40.031, SOP DA085125POT DA-LC-007 4/08/25 09:29:22	.T.30.031					Batch Date : 04/07/25	08:07:11			
i.01; 090924.05; 01 7.110; 04312111; 0 DA-108; DA-078	062224CH01; 000	10355309								
7.110; 04312111; 0 DA-108; DA-078		10355309 : Liquid Chromatography	with UV detection in acc	ordance with F.S.	Rule 64ER20-39.					
	D PA	D PASSED Cannabinoid Total THC 0.244% Total THC/Container = D9-THC 0.244 103.38 0.001 % %	D PASSED PASSED Cannabinoid Cannabinoid Total THC 0.244% D9-THC 0.2444% D9-THC THCA 0.244 ND 103.38 ND 0.001 0.001 % % SOPT.140.031, SOP.T.30.031 DAUGUS	D PASSED PASSED PASSED PASSE Cannabinoid Total THC 0.244% Image: CBD Image: CBD	D PASSED PASSED PASSED PASSED Cannabinoid Total THC Domain Domain	D PASSED PASSED PASSED Solvents PASSED Cannabinoid Total THC 0.244%/ Total THC/Container : 103.382 mg Total CBD D D D9-THC 0.244 THCA CBD DB-THC DB-THC CBG 0.244 ND ND ND ND 0.002 0.338 ND ND ND ND 0.855 0.001 0.001 0.001 0.001 0.001 0.001 % % % % % %	D PASSED PASSED PASSED Solvents PASSED PASSED Cannabinoid Total THC 0.244. 0.244. 103.38 Total THC/Container : 103.382 mg Total CBD D D D D D D D D D D D Total CBD/Container : 0.000 mg Dentic Dentic THCA CBD D D D D THCA CBD D	D PASSED PASSED PASSED Solvents PASSED PASSED D Total THC O.2.2.4.4.0% Total THC/Container : 103.382 mg Image: CBD image: CBD image: CBD image: CBD image: CBG image: C	D PASSED PASSED PASSED Solvents PASSED PASSED PASSED PASSED Cannabinoid Total THC 0.2444% Total THC Dial THC/Container : 103.382 mg Total CBD Dial CBD/Container : 0.000 mg Total CBD Dial CBD/Container : 0.000 mg Total Dial CBD Dial CBD/Container : 0.000 mg Total Dial CBD Dial CBD/Container : 0.000 mg Total Dial CBD Dial CBD/Container : 0.000 mg Derric 0.244 The Dial CBD Dial CBD The Dial CBD Dial CBD/Container : 0.000 mg The Dial CBD/Container : 0.000 mg The Dial CBD/Container : 0.000 mg Derric 0.244 The Dial CBD Dial CBD Derric Dial CBD/Container : 0.000 mg CBD Dial CBD The Dial CBD/Container : 0.000 mg The Dial CBD/Container : 0.000 mg Derric 0.244 The Dial CBD Derric Dial CBD/Container : 0.000 mg CBD Dial Dial Dial Dial Dial Dial Dial Dial	D PASSED PASSED Solvents PASSED PASSED PASSED NOT TESTED Cannabinoid Total THC 0.2444% Total Canabinoids Total CBD ND Total CBD/Container : 0.000 mg Total Cannabinoids 0.0250% DeTric 0.244 THCA CBD DeTric ND Detric 0.001 CBA Detric ND CBG CBA Detric ND CBG CBC CBC

Sunnyside*

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 54-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 04/08/25

Sunnyside Chews 100mg 10pk Sour Pineapple Sour Pineapple Matrix : Edible

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50404003-001 Harvest/Lot ID: 6871959701449665

Sampled : 04/04/25 Ordered : 04/04/25

Batch#: 6871959701449665 Sample Size Received: 12 units Total Amount : 2285 units Completed : 04/08/25 Expires: 04/08/26 Sample Method : SOP.T.20.010

Page 2 of 5

Pesticides

Pesticide	LOD	Units	Action Level	Pass/Fail	Result	Pesticide		LOD	Units	Action Level	Pass/Fail	Result
TOTAL CONTAMINANT LOAD (PESTICIDES)	0.010	ppm	30	PASS	ND	OXAMYL		0.010	ppm	0.5	PASS	ND
TOTAL DIMETHOMORPH	0.010	ppm	3	PASS	ND	PACLOBUTRAZOL		0.010	maa	0.1	PASS	ND
TOTAL PERMETHRIN	0.010	ppm	1	PASS	ND	PHOSMET		0.010		0.2	PASS	ND
TOTAL PYRETHRINS	0.010	ppm	1	PASS	ND	PIPERONYL BUTOXIDE		0.010		3	PASS	ND
TOTAL SPINETORAM	0.010	ppm	3	PASS	ND			0.010		0.4	PASS	ND
TOTAL SPINOSAD	0.010	ppm	3	PASS	ND	PRALLETHRIN						
ABAMECTIN B1A	0.010	ppm	0.3	PASS	ND	PROPICONAZOLE		0.010		1	PASS	ND
ACEPHATE	0.010	ppm	3	PASS	ND	PROPOXUR		0.010		0.1	PASS	ND
ACEQUINOCYL	0.010	ppm	2	PASS	ND	PYRIDABEN		0.010	ppm	3	PASS	ND
ACETAMIPRID	0.010	ppm	3	PASS	ND	SPIROMESIFEN		0.010	ppm	3	PASS	ND
ALDICARB	0.010	ppm	0.1	PASS	ND	SPIROTETRAMAT		0.010	ppm	3	PASS	ND
AZOXYSTROBIN	0.010	ppm	3	PASS	ND	SPIROXAMINE		0.010	ppm	0.1	PASS	ND
BIFENAZATE	0.010		3	PASS	ND	TEBUCONAZOLE		0.010	ppm	1	PASS	ND
BIFENTHRIN	0.010	ppm	0.5	PASS	ND	THIACLOPRID		0.010	ppm	0.1	PASS	ND
BOSCALID	0.010	ppm	3	PASS	ND	THIAMETHOXAM		0.010		1	PASS	ND
CARBARYL	0.010	ppm	0.5	PASS	ND	TRIFLOXYSTROBIN		0.010		3	PASS	ND
CARBOFURAN	0.010	ppm	0.1	PASS	ND					0.2	PASS	ND
CHLORANTRANILIPROLE	0.010		3	PASS	ND	PENTACHLORONITROBENZENE	(PCNB) *	0.010				
CHLORMEQUAT CHLORIDE	0.010		3	PASS	ND	PARATHION-METHYL *		0.010		0.1	PASS	ND
CHLORPYRIFOS	0.010		0.1	PASS	ND	CAPTAN *		0.070	ppm	3	PASS	ND
CLOFENTEZINE	0.010		0.5	PASS	ND	CHLORDANE *		0.010	ppm	0.1	PASS	ND
COUMAPHOS	0.010		0.1	PASS	ND	CHLORFENAPYR *		0.010	ppm	0.1	PASS	ND
DAMINOZIDE	0.010		0.1	PASS	ND	CYFLUTHRIN *		0.050	ppm	1	PASS	ND
DIAZINON	0.010		3	PASS	ND	CYPERMETHRIN *		0.050	ppm	1	PASS	ND
DICHLORVOS	0.010		0.1	PASS	ND	Analyzed by:	Weight:	Extracti	on date:		Extracted	hv:
DIMETHOATE	0.010		0.1	PASS	ND	3621, 585, 1440	0.9497a		5 14:21:49		450.585	<i></i>
ETHOPROPHOS	0.010		0.1	PASS	ND	Analysis Method : SOP.T.30.102	2.FL, SOP.T.40.102	2.FL				
ETOFENPROX	0.010	I. P.	0.1	PASS	ND	Analytical Batch : DA085105PE						
ETOXAZOLE	0.010		1.5	PASS	ND	Instrument Used : DA-LCMS-003			Batch	Date :04/05/	25 12:51:48	
FENHEXAMID	0.010		3	PASS	ND	Analyzed Date :04/08/25 09:10	:22					
FENOXYCARB	0.010		0.1	PASS	ND	Dilution : 250 Reagent : 040525.R05; 081023	01					
FENPYROXIMATE	0.010		2	PASS	ND	Consumables : 040724CH01; 22						
FIPRONIL	0.010	1.1.	0.1	PASS	ND	Pipette : N/A	102100					
FLONICAMID	0.010		2	PASS	ND	Testing for agricultural agents is p	erformed utilizing	Liquid Chrom	atography Tr	iple-Quadrupo	le Mass Spectror	metry in
FLUDIOXONIL	0.010		3	PASS	ND	accordance with F.S. Rule 64ER20	-39.					
HEXYTHIAZOX	0.010		2	PASS	ND	Analyzed by:	Weight:	Extractio			Extracted I	by:
IMAZALIL	0.010		0.1	PASS	ND	450, 585, 1440	0.9497g	04/07/25	14:21:49		450,585	
IMIDACLOPRID	0.010		1	PASS	ND	Analysis Method : SOP.T.30.151		51.FL				
KRESOXIM-METHYL	0.010		1	PASS	ND	Analytical Batch : DA085106VO Instrument Used : DA-GCMS-01			Ratch Da	te:04/05/25	12.55.01	
MALATHION	0.010		2	PASS	ND	Analyzed Date :04/08/25 09:08			Datch Da	104/05/25	12.33.01	
METALAXYL	0.010		3	PASS	ND	Dilution : 250						
METHIOCARB	0.010		0.1	PASS	ND	Reagent: 040525.R05; 081023	.01; 040225.R32;	040225.R33				
METHOMYL	0.010	1.1.	0.1	PASS	ND	Consumables: 040724CH01; 22		501				
MEVINPHOS	0.010		0.1	PASS	ND	Pipette : DA-080; DA-146; DA-2						
MYCLOBUTANIL	0.010		3	PASS	ND	Testing for agricultural agents is p accordance with F.S. Rule 64ER20		Gas Chromat	ography Tripl	e-Quadrupole	Mass Spectrome	etry in
NALED	0.010	ppm	0.5	PASS	ND	accordance with r.b. Rule 64ER20	-33.					

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

PASSED

PASSED

Sunnyside Chews 100mg 10pk Sour Pineapple Sour Pineapple Matrix : Edible

PASSED

PASSED

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50404003-001 Harvest/Lot ID: 6871959701449665 Sampled : 04/04/25 Ordered : 04/04/25

Batch#: 6871959701449665 Sample Size Received: 12 units Total Amount : 2285 units Completed : 04/08/25 Expires: 04/08/26 Sample Method : SOP.T.20.010

Page 3 of 5

Residual Solvents

Solvents	LOD	Units	Action Level	Pass/Fail	Result
1,1-DICHLOROETHENE	0.800	ppm	8	PASS	ND
1,2-DICHLOROETHANE	0.200	ppm	2	PASS	ND
2-PROPANOL	50.000	ppm	500	PASS	ND
ACETONE	75.000	ppm	750	PASS	ND
ACETONITRILE	6.000	ppm	60	PASS	ND
BENZENE	0.100	ppm	1	PASS	ND
BUTANES (N-BUTANE)	500.000	ppm	5000	PASS	ND
CHLOROFORM	0.200	ppm	2	PASS	ND
DICHLOROMETHANE	12.500	ppm	125	PASS	ND
ETHANOL	500.000	ppm		TESTED	ND
ETHYL ACETATE	40.000	ppm	400	PASS	ND
ETHYL ETHER	50.000	ppm	500	PASS	ND
ETHYLENE OXIDE	0.500	ppm	5	PASS	ND
HEPTANE	500.000	ppm	5000	PASS	ND
METHANOL	25.000	ppm	250	PASS	ND
N-HEXANE	25.000	ppm	250	PASS	ND
PENTANES (N-PENTANE)	75.000	ppm	750	PASS	ND
PROPANE	500.000	ppm	5000	PASS	ND
TOLUENE	15.000	ppm	150	PASS	ND
TOTAL XYLENES	15.000	ppm	150	PASS	ND
TRICHLOROETHYLENE	2.500	ppm	25	PASS	ND
Analyzed by: 1451, 585, 1440	Weight: 0.0211g	Extraction date: 04/05/25 16:08:31		Extracted 4571,445	
Analysis Method : SOP.T.40.041.FL Analytical Batch : DA085119SOL Instrument Used : DA-GCMS-003 Analyzed Date : 04/08/25 09:11:31			Batch Date : 04/05/25 1	5:48:27	
Dilution : 1 Reagent : N/A					

Consumables : N/A Pipette : N/A

Residual solvents analysis is performed utilizing Gas Chromatography Mass Spectrometry in accordance with with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 04/08/25

Sunnyside Chews 100mg 10pk Sour Pineapple Sour Pineapple Matrix : Edible

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50404003-001 Harvest/Lot ID: 6871959701449665 Batch#: 6871959701449665 Sample Size Received: 12 units

Sampled : 04/04/25 Ordered : 04/04/25

Total Amount : 2285 units Completed : 04/08/25 Expires: 04/08/26 Sample Method : SOP.T.20.010

Page 4 of 5

Ç	Micro	bial				PAS	SED	သို့	Mycot	: ox i	ins			PAS	SED
Analyte		I	LOD	Units	Result	Pass / Fail	Action Level	Analyte			LOD	Units	Result	Pass / Fail	Action Level
ASPERGILLU	S TERREUS				Not Present			AFLATOXIN	B2		0.002	ppm	ND	PASS	0.02
ASPERGILLU	S NIGER				Not Present	t PASS		AFLATOXIN	B1		0.002	ppm	ND	PASS	0.02
ASPERGILLU	S FUMIGATUS				Not Present			OCHRATOXI	A		0.002	ppm	ND	PASS	0.02
ASPERGILLU					Not Present			AFLATOXIN			0.002	1.1.	ND	PASS	0.02
	A SPECIFIC GE	NE			Not Present			AFLATOXIN	G2		0.002	ppm	ND	PASS	0.02
ECOLI SHIGE TOTAL YEAS	LLA F AND MOLD		10	CFU/g	Not Present <10	PASS PASS	100000	Analyzed by: 3621, 585, 144	Weig 0.949		Extraction dat 04/07/25 14:2			xtracted 150,585	by:
Analyzed by: 520, 585, 144				ction date: /25 10:14:30	0	Extracted b 4520,4044			od:SOP.T.30.102.		.T.40.102.FL				
	d : SOP.T.40.05 h : DA085064M		40.058	3.FL, SOP.T.4	0.209.FL			Instrument Us	ed : DA-LCMS-003 : 04/08/25 09:09:	(MYC)	B	atch Date	:04/05/2	5 12:56:3	1
nstrument Use 2720 Thermoc 95*C) DA-049	ed : PathogenD ycler DA-010,Fi ,DA-402 Therm : 04/08/25 10:3	x Scanner D sher Scient o Scientific	ific Iso	temp Heat I		atch Date : 0 7:23:17	4/05/25		525.R05; 081023.0 040724CH01; 223						
Dilution : 10 Reagent : 0217 Consumables : Pipette : N/A	25.10; 021725 7581001067	.26; 031525	5.R03;	101624.14					ting utilizing Liquid C h F.S. Rule 64ER20-3	9.		-Quadrupo	le Mass Spe	ectrometry	in
Analyzed by: 1520, 4892, 58	5, 1440	Weight: 1.1219g		xtraction da 4/05/25 10:		Extracted 4520,404		Hg	Heavy	Me	etals			PAS	SED
nalytical Batc	d : SOP.T.40.20 h : DA085065T d : Incubator (2	ΥM	20 [62	librated with	Poteb D	ate:04/05/2	25.07.24.0	Metal			LOD	Units	Result	Pass / Fail	Action Level
A-3821		23°C) DA- 3	20 [Ud	ilibiateu witi	Datch D	ate: 04/03/2	23 07.24.0	TOTAL CONT	AMINANT LOAD	METAL	. s 0.080	ppm	ND	PASS	5
nalyzed Date	: 04/08/25 09:2	29:49						ARSENIC			0.020	ppm	ND	PASS	1.5
ilution: 10								CADMIUM			0.020	ppm	ND	PASS	0.5
	25.10; 021725	.26; 031525	5.R03;	101624.14				MERCURY			0.020	ppm	ND	PASS	3
onsumables : ipette : N/A	N/A							LEAD			0.020	ppm	ND	PASS	0.5
otal yeast and i	mold testing is pe		zing MF	PN and traditio	onal culture bas	sed technique	s in	Analyzed by: 1022, 585, 144	Weigh 0.221		Extraction dat 04/07/25 10:1			xtracted I 022,1879	
ccordance with	F.S. Rule 64ER20	1-39.						Analytical Bate	od:SOP.T.30.082. ch:DA085083HEA ed:DA-ICPMS-004 :04/08/25 12:48:0			h Date : ()4/05/25 1	0:59:49	
								120324.07; 03 Consumables :	525.R31; 031725.F 3125.R16 040724CH01; J60 61; DA-191; DA-21	9879-01		25.R30; C)33125.R1	7; 03312	5.R18;

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 04/08/25

Page 5 of 5

. Sunnyside Chews 100mg 10pk Sour Pineapple Sour Pineapple Matrix : Edible

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50404003-001 Harvest/Lot ID: 6871959701449665 Batch#: 6871959701449665 Sample Size Received: 12 units Sampled : 04/04/25 Ordered : 04/04/25

Total Amount : 2285 units Completed : 04/08/25 Expires: 04/08/26 Sample Method : SOP.T.20.010

Filth/Foreign
Material

PASSED		
--------	--	--

Homogeneity

Amount of tests conducted : 22

PASSED

Analyte Filth and Foreign Mat	erial	LOD Units Result P/F Action Level		Analyte		LOD	Units	Pass/Fail	Result	Action Level			
Analyzed by: 1879, 585, 1440	Weight: 1g		raction date 07/25 09:03		Ext 187	racted by: 79	TOTAL THC - HOMOG	ENEITY	0.001 %		PASS	0.937	
Analysis Method : SOP.T.							(RSD)						
Analytical Batch : DA085 Instrument Used : Filth/F Analyzed Date : 04/07/25	oreign Mater	ial Micro	oscope	Batch D	Date : 04/07	/25 08:57:10	Analyzed by	Average Weight	e	Extractio	n date :	E	xtracted By :
Dilution : N/A	10.25.50						3335, 585, 1440	4.403g		04/05/25	10:49:55	3.	335
Reagent : N/A Consumables : N/A Pipette : N/A		f					Analysis Method : SOP.T Analytical Batch : DA08 Instrument Used : DA-L0 Analyzed Date : 04/07/2	5066HOM C-004	OP.T.40		: h Date : 04/05	5/25 07:33:	15
Filth and foreign material in technologies in accordance				ection utilizi	ng naked eye	e and microscope	Dilution : 40						
	ater A	ctiv	i+.,		PA	SSED	Reagent : 030125.01; 0 Consumables : 947.110 Pipette : DA-079; DA-10	04312111; 0				468945; 0	000355309
		CLIV	ILY				Homogeneity testing is pe accordance with F.S. Rule		g High Pe	rformance L	iquid Chromato	graphy with	UV detection in

Analyte	LOD	Units	Result	P/F	Action Level
Water Activity	0.010		0.692	PASS	0.85
Analyzed by: 4797, 3379, 585, 1440	Weight: 7.216g	Extraction 04/07/25	on date: 5 14:42:25		<pre>ctracted by:</pre> 379,1879
Analysis Method : SOP.T.40. Analytical Batch : DA085086 Instrument Used : DA-028 R Analyzed Date : 04/08/25 09	WAT otronic Hygropal	m	Batch Da	te : 04/05/	25 11:18:17
Dilution : N/A Reagent : 101724.36 Consumables : PS-14 Pipette : N/A					

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 04/08/25

PASSED