

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

#### Kaycha Labs

..... Supply Shake 7g - Lmn Bean x Italian Ice (S) Lmn Bean x Italian Ice (S) Matrix: Flower Classification: High THC Type: Flower-Cured



Production Method: Cured

Batch#: 4671587524956524

Harvest Date: 03/25/25 Sample Size Received: 5 units Total Amount: 1122 units Retail Product Size: 7 gram

Servings: 1 Ordered: 03/31/25 Sampled: 03/31/25 Completed: 04/03/25 Revision Date: 04/03/25 Sampling Method: SOP.T.20.010

PASSED

Harvest/Lot ID: 4671587524956524

Seed to Sale#: 5152111819529002

Cultivation Facility: FL - Indiantown (4430)

Processing Facility : FL - Indiantown (4430) Source Facility: FL - Indiantown (4430)

Pages 1 of 5

# **Certificate of Analysis**

### **COMPLIANCE FOR RETAIL**

Laboratory Sample ID: DA50331010-004



Apr 03, 2025 | Sunnyside 22205 Sw Martin Hwv

| SAFETY RE                                                                                                                                                                                      | SULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                 |                        |                                     |                                                                    |                                                  |                        |                   |                                         | MISC.                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------|-------------------------------------|--------------------------------------------------------------------|--------------------------------------------------|------------------------|-------------------|-----------------------------------------|------------------------|
| R<br>Ø                                                                                                                                                                                         | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Нд                                                                              | Ċ,                     | ç                                   | Ä                                                                  |                                                  |                        | )                 |                                         | Ô                      |
| Pesticid<br>PASSE                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | vy Metals<br>ASSED                                                              | Microbials<br>PASSED   | Mycotoxins<br>PASSED                | Residuals<br>Solvents<br><b>NOT TESTED</b>                         | Filth<br><b>PASSED</b>                           | Water Act<br>PASSE     |                   | Moisture<br>PASSED                      | Terpenes<br>TESTED     |
| Ä                                                                                                                                                                                              | Cannab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | inoid                                                                           |                        |                                     |                                                                    |                                                  |                        |                   |                                         | TESTED                 |
| E                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | THC<br>1349<br>HC/Container :                                                   | -                      |                                     | Total CBD<br><b>0.051%</b><br>Total CBD/Container :                |                                                  |                        | 23                | Cannabinoid<br>627%                     |                        |
|                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 |                        |                                     |                                                                    |                                                  |                        |                   |                                         |                        |
|                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 |                        |                                     |                                                                    |                                                  |                        |                   |                                         |                        |
|                                                                                                                                                                                                | D9-ТНС                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | тнса                                                                            | CBD                    | CBDA DE                             | нтнс свс                                                           | CBGA                                             | CBN                    | тнсу              | CBDV                                    | СВС                    |
| %                                                                                                                                                                                              | 0.669                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.195                                                                          | ND                     | 0.059 N                             | D 0.079                                                            | 0.513                                            | ND                     | ND                | ND                                      | 0.112                  |
| mg/unit                                                                                                                                                                                        | 0.669<br>46.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.195<br>1553.65                                                               | ND<br>ND               | 0.059 N<br>4.13 N                   | D 0.079<br>D 5.53                                                  | 0.513<br>35.91                                   | ND<br>ND               | ND<br>ND          | ND<br>ND                                | 0.112<br>7.84          |
|                                                                                                                                                                                                | 0.669                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.195                                                                          | ND                     | 0.059 N<br>4.13 N                   | D 0.079<br>D 5.53<br>.001 0.001                                    | 0.513                                            | ND<br>ND               | ND                | ND                                      | 0.112                  |
| mg/unit<br>LOD<br>Analyzed by:                                                                                                                                                                 | 0.669<br>46.83<br>0.001<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22.195<br>1553.65<br>0.001                                                      | ND<br>ND<br>0.001      | 0.059 N<br>4.13 N<br>0.001 0<br>% % | D 0.079<br>D 5.53<br>.001 0.001<br>%                               | 0.513<br>35.91<br>0.001<br>%<br>date:            | ND<br>ND<br>0.001      | ND<br>ND<br>0.001 | ND<br>ND<br>0.001<br>%<br>Extracted by: | 0.112<br>7.84<br>0.001 |
| mg/unit<br>LOD<br>Analyzed by:<br>4351, 3335, 585,<br>Analysis Method 1<br>Analytical Batch 2<br>Instrument Used                                                                               | 0.669<br>46.83<br>0.001<br>%<br>1665, 1440<br>: SOP.T.40.031, SO<br>DA084927POT<br>: DA-LC-002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.195<br>1553.65<br>0.001<br>%                                                 | ND<br>ND<br>0.001      | 0.059 N<br>4.13 N<br>0.001 0<br>% % | D 0.079<br>D 5.53<br>.001 0.001<br>%<br>Extraction 0<br>04/01/25 1 | 0.513<br>35.91<br>0.001<br>%<br>date:            | ND<br>ND<br>0.001<br>% | ND<br>ND<br>0.001 | ND<br>ND<br>0.001<br>%                  | 0.112<br>7.84<br>0.001 |
| mg/unit<br>LOD<br>Analyzed by:<br>4351, 3335, 585,<br>Analysis Method<br>Analysis Method<br>Analyzed Date : (1)<br>Dilution : 400<br>Reagent : 03282!<br>Consumables : 94                      | 0.669<br>46.83<br>0.001<br>%<br>1665, 1440<br>: SOP.T.40.031, SO<br>: DA084927P0T<br>: DA0427P0T<br>: | 22.195<br>1553.65<br>0.001<br>%                                                 | ND<br>ND<br>0.001<br>% | 0.059 N<br>4.13 N<br>0.001 0<br>% % | D 0.079<br>D 5.53<br>.001 0.001<br>%<br>Extraction 0<br>04/01/25 1 | 0.513<br>35.91<br>0.001<br>%<br>date:<br>2:52:29 | ND<br>ND<br>0.001<br>% | ND<br>ND<br>0.001 | ND<br>ND<br>0.001<br>%<br>Extracted by: | 0.112<br>7.84<br>0.001 |
| mg/unit<br>LOD<br>Analyzed by:<br>4351, 3335, 585,<br>Analysis Method<br>Analysis Method<br>Analyzed Date : (1)<br>Dilution : 400<br>Reagent : 03282!<br>Consumables : 94<br>Pipette : DA-079; | 0.669<br>46.83<br>0.001<br>%<br>1665, 1440<br>: SOP.T.40.031, SO<br>D.DACB4927POT<br>: DA-LC-002<br>14/03/25 14:32:59<br>5.R13; 012725.03;<br>17.110; 04312111;<br>; DA-108; DA-078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.195<br>1553.65<br>0.001<br>%<br>P.T.30.031<br>032625.R40<br>062224CH01; 0000 | ND<br>ND<br>0.001<br>% | 0.059 N<br>4.13 N<br>0.001 0<br>% % | D 0.079<br>D 5.53<br>.001 0.001<br>%<br>Extraction 0<br>04/01/25 1 | 0.513<br>35.91<br>0.001<br>%<br>date:<br>2:52:29 | ND<br>ND<br>0.001<br>% | ND<br>ND<br>0.001 | ND<br>ND<br>0.001<br>%<br>Extracted by: | 0.112<br>7.84<br>0.001 |

Sunnyside\*

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, pp=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

#### **Vivian Celestino** Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 04/03/25

### indiantown, FL, 34956, US



Supply Shake 7g - Lmn Bean x Italian Ice (S) Lmn Bean x Italian Ice (S) Matrix : Flower Type: Flower-Cured



4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

### **Certificate of Analysis**

PASSED

TESTED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50331010-004 Harvest/Lot ID: 4671587524956524 Batch#: 4671587524956524 Sample Size Received: 5 units Sampled : 03/31/25 Ordered : 03/31/25

Total Amount : 1122 units Completed : 04/03/25 Expires: 04/03/26 Sample Method : SOP.T.20.010

Page 2 of 5

| $\bigcirc$ |
|------------|
|------------|

**Terpenes** 

| Terpenes           | LOD (%) | Pass/Fail | mg/unit | Result (%) | Terpenes                                                        | LOD (%)                     | Pass/Fail          | mg/unit          | Result (%)                       |              |
|--------------------|---------|-----------|---------|------------|-----------------------------------------------------------------|-----------------------------|--------------------|------------------|----------------------------------|--------------|
| TOTAL TERPENES     | 0.007   | TESTED    | 93.45   | 1.335      | VALENCENE                                                       | 0.007                       | TESTED             | ND               | ND                               |              |
| BETA-CARYOPHYLLENE | 0.007   | TESTED    | 28.42   | 0.406      | ALPHA-CEDRENE                                                   | 0.005                       | TESTED             | ND               | ND                               |              |
| LIMONENE           | 0.007   | TESTED    | 15.54   | 0.222      | ALPHA-PHELLANDRENE                                              | 0.007                       | TESTED             | ND               | ND                               |              |
| LINALOOL           | 0.007   | TESTED    | 12.32   | 0.176      | ALPHA-TERPINENE                                                 | 0.007                       | TESTED             | ND               | ND                               |              |
| BETA-MYRCENE       | 0.007   | TESTED    | 9.59    | 0.137      | ALPHA-TERPINOLENE                                               | 0.007                       | TESTED             | ND               | ND                               |              |
| ALPHA-HUMULENE     | 0.007   | TESTED    | 8.82    | 0.126      | CIS-NEROLIDOL                                                   | 0.003                       | TESTED             | ND               | ND                               |              |
| ALPHA-BISABOLOL    | 0.007   | TESTED    | 4.27    | 0.061      | GAMMA-TERPINENE                                                 | 0.007                       | TESTED             | ND               | ND                               |              |
| FENCHYL ALCOHOL    | 0.007   | TESTED    | 3.71    | 0.053      | TRANS-NEROLIDOL                                                 | 0.005                       | TESTED             | ND               | ND                               |              |
| LPHA-TERPINEOL     | 0.007   | TESTED    | 3.64    | 0.052      | Analyzed by:                                                    | Weigl                       | nt:                | Extracti         | on date:                         | Extracted by |
| ETA-PINENE         | 0.007   | TESTED    | 3.29    | 0.047      | 4444, 4451, 585, 1440                                           | 1.037                       | g                  | 04/01/2          | 5 10:43:36                       | 4444         |
| ARNESENE           | 0.007   | TESTED    | 1.96    | 0.028      | Analysis Method : SOP.T.30.061A.FL, SOP.T.4                     | 0.061A.FL                   |                    |                  |                                  |              |
| LPHA-PINENE        | 0.007   | TESTED    | 1.89    | 0.027      | Analytical Batch : DA084935TER<br>Instrument Used : DA-GCMS-009 |                             |                    |                  | Batch Date : 04/01/25 0          | 0-30-50      |
| CARENE             | 0.007   | TESTED    | ND      | ND         | Analyzed Date : 04/02/25 09:22:12                               |                             |                    |                  | Date: Date 104/01/23 0:          |              |
| ORNEOL             | 0.013   | TESTED    | ND      | ND         | Dilution : 10                                                   |                             |                    |                  |                                  |              |
| AMPHENE            | 0.007   | TESTED    | ND      | ND         | Reagent : 120224.01                                             |                             |                    |                  |                                  |              |
| AMPHOR             | 0.007   | TESTED    | ND      | ND         | Consumables : 947.110; 04402004; 2240626                        | ; 0000355309                |                    |                  |                                  |              |
| RYOPHYLLENE OXIDE  | 0.007   | TESTED    | ND      | ND         | Pipette : DA-065                                                |                             |                    |                  |                                  |              |
| DROL               | 0.007   | TESTED    | ND      | ND         | Terpenoid testing is performed utilizing Gas Chrom              | atography Mass Spectrometry | . For all Flower s | imples, the Tota | Terpenes % is dry-weight correct | ed.          |
| JCALYPTOL          | 0.007   | TESTED    | ND      | ND         |                                                                 |                             |                    |                  |                                  |              |
| ENCHONE            | 0.007   | TESTED    | ND      | ND         |                                                                 |                             |                    |                  |                                  |              |
| ERANIOL            | 0.007   | TESTED    | ND      | ND         |                                                                 |                             |                    |                  |                                  |              |
| ERANYL ACETATE     | 0.007   | TESTED    | ND      | ND         |                                                                 |                             |                    |                  |                                  |              |
| UAIOL              | 0.007   | TESTED    | ND      | ND         |                                                                 |                             |                    |                  |                                  |              |
| EXAHYDROTHYMOL     | 0.007   | TESTED    | ND      | ND         |                                                                 |                             |                    |                  |                                  |              |
| OBORNEOL           | 0.007   | TESTED    | ND      | ND         |                                                                 |                             |                    |                  |                                  |              |
| OPULEGOL           | 0.007   | TESTED    | ND      | ND         |                                                                 |                             |                    |                  |                                  |              |
| IEROL              | 0.007   | TESTED    | ND      | ND         |                                                                 |                             |                    |                  |                                  |              |
| CIMENE             | 0.007   | TESTED    | ND      | ND         |                                                                 |                             |                    |                  |                                  |              |
| ULEGONE            | 0.007   | TESTED    | ND      | ND         |                                                                 |                             |                    |                  |                                  |              |
| ABINENE            | 0.007   | TESTED    | ND      | ND         |                                                                 |                             |                    |                  |                                  |              |
| SABINENE HYDRATE   | 0.007   | TESTED    | ND      | ND         |                                                                 |                             |                    |                  |                                  |              |

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors. **Vivian Celestino** Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

1/2



Supply Shake 7g - Lmn Bean x Italian Ice (S) Lmn Bean x Italian Ice (S) Matrix : Flower Type: Flower-Cured



PASSED

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

## **Certificate of Analysis**

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50331010-004 Harvest/Lot ID: 4671587524956524

Sampled : 03/31/25 Ordered : 03/31/25

Batch#: 4671587524956524 Sample Size Received: 5 units Total Amount : 1122 units Completed : 04/03/25 Expires: 04/03/26 Sample Method : SOP.T.20.010

Page 3 of 5



### **Pesticides**

| Pesticide                           | LOD         | Units | Action     | Pass/Fail    | Result   | Pesticide                                                                 |                      | LOD       | Units           | Action         | Pass/Fail       | Result   |
|-------------------------------------|-------------|-------|------------|--------------|----------|---------------------------------------------------------------------------|----------------------|-----------|-----------------|----------------|-----------------|----------|
|                                     |             |       | Level      |              |          |                                                                           |                      |           |                 | Level          |                 |          |
| TOTAL CONTAMINANT LOAD (PESTICIDES) | 0.010       |       | 5          | PASS         | ND       | OXAMYL                                                                    |                      | 0.010     | ppm             | 0.5            | PASS            | ND       |
| TOTAL DIMETHOMORPH                  | 0.010       |       | 0.2        | PASS         | ND       | PACLOBUTRAZOL                                                             |                      | 0.010     | ppm             | 0.1            | PASS            | ND       |
| TOTAL PERMETHRIN                    | 0.010       |       | 0.1        | PASS         | ND       | PHOSMET                                                                   |                      | 0.010     | ppm             | 0.1            | PASS            | ND       |
| TOTAL PYRETHRINS                    | 0.010       |       | 0.5        | PASS         | ND       | PIPERONYL BUTOXIDE                                                        |                      | 0.010     | ppm             | 3              | PASS            | ND       |
| TOTAL SPINETORAM                    | 0.010       |       | 0.2        | PASS         | ND       | PRALLETHRIN                                                               |                      | 0.010     | maa             | 0.1            | PASS            | ND       |
| TOTAL SPINOSAD                      | 0.010       |       | 0.1        | PASS         | ND       | PROPICONAZOLE                                                             |                      | 0.010     |                 | 0.1            | PASS            | ND       |
| ABAMECTIN B1A                       | 0.010       |       | 0.1        | PASS         | ND       | PROPOXUR                                                                  |                      | 0.010     |                 | 0.1            | PASS            | ND       |
| ACEPHATE                            | 0.010       |       | 0.1        | PASS         | ND       |                                                                           |                      |           |                 | 0.2            | PASS            | ND       |
| ACEQUINOCYL                         | 0.010       |       | 0.1        | PASS         | ND       | PYRIDABEN                                                                 |                      | 0.010     |                 |                |                 |          |
| ACETAMIPRID                         | 0.010       |       | 0.1        | PASS         | ND       | SPIROMESIFEN                                                              |                      | 0.010     |                 | 0.1            | PASS            | ND       |
| ALDICARB                            | 0.010       |       | 0.1        | PASS         | ND       | SPIROTETRAMAT                                                             |                      | 0.010     |                 | 0.1            | PASS            | ND       |
| AZOXYSTROBIN                        | 0.010       |       | 0.1        | PASS         | ND       | SPIROXAMINE                                                               |                      | 0.010     | ppm             | 0.1            | PASS            | ND       |
| BIFENAZATE                          | 0.010       |       | 0.1        | PASS         | ND       | TEBUCONAZOLE                                                              |                      | 0.010     | ppm             | 0.1            | PASS            | ND       |
| BIFENTHRIN                          | 0.010       |       | 0.1        | PASS         | ND       | THIACLOPRID                                                               |                      | 0.010     | ppm             | 0.1            | PASS            | ND       |
| BOSCALID                            | 0.010       |       | 0.1        | PASS         | ND       | THIAMETHOXAM                                                              |                      | 0.010     | ppm             | 0.5            | PASS            | ND       |
| CARBARYL                            | 0.010       |       | 0.5        | PASS         | ND       | TRIFLOXYSTROBIN                                                           |                      | 0.010     | ppm             | 0.1            | PASS            | ND       |
| CARBOFURAN                          | 0.010       |       | 0.1        | PASS         | ND       | PENTACHLORONITROBENZENE                                                   | (DCNP) *             | 0.010     |                 | 0.15           | PASS            | ND       |
| CHLORANTRANILIPROLE                 | 0.010       |       | 1          | PASS         | ND       | PARATHION-METHYL *                                                        | (FCND)               | 0.010     |                 | 0.1            | PASS            | ND       |
| CHLORMEQUAT CHLORIDE                | 0.010       | P.P.  | 1          | PASS         | ND       |                                                                           |                      |           |                 | 0.7            |                 | ND       |
| CHLORPYRIFOS                        | 0.010       |       | 0.1        | PASS         | ND       | CAPTAN *                                                                  |                      | 0.070     |                 |                | PASS            |          |
| CLOFENTEZINE                        | 0.010       |       | 0.2        | PASS         | ND       | CHLORDANE *                                                               |                      | 0.010     |                 | 0.1            | PASS            | ND       |
| COUMAPHOS                           | 0.010       |       | 0.1        | PASS         | ND       | CHLORFENAPYR *                                                            |                      | 0.010     |                 | 0.1            | PASS            | ND       |
| DAMINOZIDE                          | 0.010       |       | 0.1        | PASS         | ND       | CYFLUTHRIN *                                                              |                      | 0.050     | ppm             | 0.5            | PASS            | ND       |
| DIAZINON                            | 0.010       |       | 0.1        | PASS         | ND       | CYPERMETHRIN *                                                            |                      | 0.050     | ppm             | 0.5            | PASS            | ND       |
| DICHLORVOS                          | 0.010       |       | 0.1        | PASS         | ND       | Analyzed by:                                                              | Weight:              | Extract   | tion date:      |                | Extracted       | by:      |
| DIMETHOATE                          | 0.010       |       | 0.1        | PASS         | ND       | 3621, 585, 1440                                                           | 1.1725g              | 04/01/2   | 25 11:26:37     |                | 3621            |          |
| ETHOPROPHOS                         | 0.010       | 1.1.1 | 0.1        | PASS         | ND       | Analysis Method : SOP.T.30.102                                            | .FL, SOP.T.40.102.FI | -         |                 |                |                 |          |
| ETOFENPROX                          | 0.010       |       | 0.1        | PASS         | ND       | Analytical Batch : DA084932PES                                            |                      |           |                 |                |                 |          |
| ETOXAZOLE                           | 0.010       |       | 0.1        | PASS         | ND       | Instrument Used : DA-LCMS-003<br>Analyzed Date : 04/02/25 15:28:          |                      |           | Batch           | Date :04/01/2  | 5 09:28:28      |          |
| FENHEXAMID                          | 0.010       |       | 0.1        | PASS         | ND       | Dilution : 250                                                            | 22                   |           |                 |                |                 |          |
| FENOXYCARB                          | 0.010       |       | 0.1        | PASS         | ND       | Reagent: 032725.R10; 032625.                                              | R20- 032025 R01- 0   | 33125 BO  | 1.012925 BO     | 1· 032625 B01  | 081023.01       |          |
| FENPYROXIMATE                       | 0.010       |       | 0.1        | PASS         | ND       | Consumables : 6822423-02                                                  | 125, 052525.1101, 0  | 55125.110 | 1, 012525.110   | 1, 052025.110  | 1,001025.01     |          |
| FIPRONIL                            | 0.010       |       | 0.1        | PASS<br>PASS | ND       | Pipette : DA-093; DA-094; DA-21                                           | 19                   |           |                 |                |                 |          |
| FLONICAMID                          | 0.010       |       | 0.1        |              | ND       | Testing for agricultural agents is p                                      |                      | uid Chron | natography Trij | ole-Quadrupole | Mass Spectrom   | netry in |
| FLUDIOXONIL                         | 0.010       |       | 0.1        | PASS         | ND       | accordance with F.S. Rule 64ER20-                                         |                      |           |                 |                |                 |          |
| HEXYTHIAZOX                         | 0.010       |       | 0.1        | PASS         | ND       | Analyzed by:                                                              | Weight:              |           | tion date:      |                | Extracted       | by:      |
|                                     | 0.010       | P.P.  | 0.1<br>0.4 | PASS         | ND<br>ND | 4640, 585, 1440                                                           | 1.1725g              |           | 25 11:26:37     |                | 3621            |          |
| IMIDACLOPRID                        | 0.010       |       | 0.4        | PASS         | ND       | Analysis Method :SOP.T.30.151<br>Analytical Batch :DA084934V01            |                      | FL        |                 |                |                 |          |
| KRESOXIM-METHYL                     | 0.010       |       |            | PASS<br>PASS |          | Instrument Used : DA-GCMS-010                                             |                      |           | Batch Dat       | te:04/01/25 (  | 9.30.11         |          |
| MALATHION                           | 0.010 0.010 |       | 0.2<br>0.1 | PASS         | ND<br>ND | Analyzed Date :04/02/25 09:15:                                            |                      |           | Duttin Du       |                | 5156111         |          |
| METALAXYL                           |             |       | 0.1        |              |          | Dilution: 250                                                             |                      |           |                 |                |                 |          |
| METHIOCARB                          | 0.010       |       |            | PASS<br>PASS | ND<br>ND | Reagent: 032725.R10; 032625.                                              | R29; 032925.R01; 0   | 33125.R0  | 1; 012925.R0    | 1; 032625.R01  | L; 081023.01    |          |
| METHOMYL                            | 0.010       |       | 0.1        |              |          | Consumables : 6822423-02                                                  |                      |           |                 |                |                 |          |
| MEVINPHOS                           | 0.010       |       | 0.1        | PASS         | ND       | Pipette : DA-093; DA-094; DA-21                                           |                      |           |                 |                |                 |          |
| MYCLOBUTANIL                        | 0.010       |       | 0.1 0.25   | PASS         | ND<br>ND | Testing for agricultural agents is p<br>accordance with F.S. Rule 64ER20- |                      | s Chroma  | tography Triple | e-Quadrupole N | lass Spectromet | try in   |
| NALED                               | 0.010       | ррш   | 0.20       | FA33         | NU       | accordance with 1.5. Null 04ER20-                                         |                      |           |                 |                |                 |          |

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

**Vivian Celestino** Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

1/2

#### Revision: #1 This revision supersedes any and all previous versions of this document.

#### PASSED



Supply Shake 7g - Lmn Bean x Italian Ice (S) Lmn Bean x Italian Ice (S) Matrix : Flower Type: Flower-Cured



4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

## **Certificate of Analysis**

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50331010-004 Harvest/Lot ID: 4671587524956524

Sampled : 03/31/25 Ordered : 03/31/25

Batch#: 4671587524956524 Sample Size Received: 5 units Total Amount : 1122 units Completed : 04/03/25 Expires: 04/03/26 Sample Method : SOP.T.20.010

Page 4 of 5

| E.                                                               | Microbi                                                                                       | al                |                                    |                            | PAS                          | SED             | သို့                           | Mycotox                                                                              | ins                             |            | l            | PAS               | SED             |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------|------------------------------------|----------------------------|------------------------------|-----------------|--------------------------------|--------------------------------------------------------------------------------------|---------------------------------|------------|--------------|-------------------|-----------------|
| Analyte                                                          |                                                                                               | LOD               | Units                              | Result                     | Pass /<br>Fail               | Action<br>Level | Analyte                        |                                                                                      | LOD                             | Units      | Result       | Pass /<br>Fail    | Action<br>Level |
| SALMONELL                                                        | A SPECIFIC GENE                                                                               |                   |                                    | Not Present                | PASS                         |                 | AFLATOXIN                      | 32                                                                                   | 0.002                           | ppm        | ND           | PASS              | 0.02            |
| ECOLI SHIGE                                                      | LLA                                                                                           |                   |                                    | Not Present                | PASS                         |                 | AFLATOXIN                      | 31                                                                                   | 0.002                           | ppm        | ND           | PASS              | 0.02            |
| ASPERGILLU                                                       |                                                                                               |                   |                                    | Not Present                | PASS                         |                 | OCHRATOXII                     |                                                                                      | 0.002                           | ppm        | ND           | PASS              | 0.02            |
|                                                                  | S FUMIGATUS                                                                                   |                   |                                    | Not Present                | PASS                         |                 | AFLATOXIN                      |                                                                                      | 0.002                           |            | ND           | PASS              | 0.02            |
| ASPERGILLU                                                       |                                                                                               |                   |                                    | Not Present<br>Not Present | PASS<br>PASS                 |                 | AFLATOXIN                      | 52                                                                                   | 0.002                           | ppm        | ND           | PASS              | 0.02            |
|                                                                  | T AND MOLD                                                                                    | 10                | CFU/g                              | 850                        | PASS                         | 100000          | Analyzed by:<br>3621, 585, 144 | Weight:<br>0 1.1725g                                                                 | Extraction dat<br>04/01/25 11:2 |            |              | Extracted<br>3621 | by:             |
| Analyzed by:<br>4777, 4520, 40                                   | 044, 585, 1440                                                                                | Weight:<br>0.925g | Extraction                         | on date:<br>5 09:28:19     | <b>Extract</b><br>4520,48    |                 |                                | <b>d</b> : SOP.T.30.102.FL, SOP.<br><b>h</b> : DA084933MYC                           | .T.40.102.FL                    |            |              |                   |                 |
|                                                                  | od : SOP.T.40.056C, S<br>:h : DA084915MIC                                                     | 5                 | 8.FL, SOP.T.                       | 40.209.FL                  |                              |                 | Instrument Us                  | ed : DA-LCMS-003 (MYC)<br>: 04/02/25 15:27:08                                        | Ba                              | atch Date  | :04/01/25    | 09:30:1           | D               |
| Instrument Use<br>2720 Thermoc<br>(95*C) DA-049<br>Analyzed Date | ed : PathogenDx Scar<br>:ycler DA-010,Fisher S<br>),DA-402 Thermo Scie<br>: 04/02/25 10:24:37 | Scientific Iso    | otemp Heat                         | Block 07:4                 | <b>:h Date :</b> 0<br>14:58  | 4/01/25         | 081023.01<br>Consumables :     | 725.R10; 032625.R29; 03<br>6822423-02<br>93; DA-094; DA-219                          | 2925.R01; 0331                  | 25.R01; 0  | )12925.R0    | 1; 032625         | 5.R01;          |
|                                                                  | 625.56; 021725.19; 0<br>7581001033; 75810                                                     |                   | ; 062624.20                        | )                          |                              |                 | Mycotoxins test                | ing utilizing Liquid Chromatog<br>n F.S. Rule 64ER20-39.                             | graphy with Triple              | Quadrupo   | le Mass Spe  | ctrometry         | in              |
| Analyzed by:<br>4777, 4571, 58                                   |                                                                                               |                   | <b>Extraction d</b><br>04/01/25 09 |                            | <b>Extracted</b><br>4520,489 |                 | Hg                             | Heavy Me                                                                             | etals                           |            | I            | PAS               | SED             |
| Analytical Bate                                                  | od : SOP.T.40.209.FL<br>ch : DA084916TYM<br>ed : Incubator (25*C)                             | DA- 328 [ca       | alibrated wit                      | th Batch Dat               | <b>e:</b> 04/01/2            | 25 07:45:5      |                                |                                                                                      | LOD                             | Units      |              | Pass /<br>Fail    | Action<br>Level |
|                                                                  | : 04/03/25 09:55:15                                                                           |                   |                                    |                            |                              |                 |                                | AMINANT LOAD METAL                                                                   |                                 | ppm        | ND           | PASS              | 1.1             |
| Dilution: 10                                                     |                                                                                               |                   |                                    |                            |                              |                 | ARSENIC<br>CADMIUM             |                                                                                      | 0.020                           | ppm<br>ppm | <0.100<br>ND | PASS<br>PASS      | 0.2<br>0.2      |
| Reagent : 0226<br>Consumables :                                  | 625.56; 021725.19; 0                                                                          | 22625.R53         |                                    |                            |                              |                 | MERCURY                        |                                                                                      | 0.020                           | ppm        | ND           | PASS              | 0.2             |
| Pipette : N/A                                                    | IN/A                                                                                          |                   |                                    |                            |                              |                 | LEAD                           |                                                                                      | 0.020                           |            | ND           | PASS              | 0.5             |
|                                                                  | mold testing is performe<br>F.S. Rule 64ER20-39.                                              | ed utilizing M    | PN and tradit                      | ional culture base         | d technique:                 | s in            | Analyzed by:<br>1022, 585, 144 | Weight:<br>0 0.2229g                                                                 | Extraction dat<br>04/01/25 10:4 |            |              | Extracted<br>4056 | by:             |
|                                                                  |                                                                                               |                   |                                    |                            |                              |                 | Analytical Bate                | d: SOP.T.30.082.FL, SOP.<br>h: DA084928HEA<br>ad: DA-ICPMS-004<br>:04/02/25 11:26:45 | .T.40.082.FL                    |            | )4/01/25 0   | 9:11:06           |                 |
|                                                                  |                                                                                               |                   |                                    |                            |                              |                 | 120324.07<br>Consumables :     | 525.R31; 033125.R19; 03:<br>040724CH01; J609879-0:<br>51; DA-191; DA-216             |                                 | 25.R17; 0  | )33125.R1    | B; 033125         | 5.R16;          |

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

#### **Vivian Celestino** Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

1/2

Signature 04/03/25



Page 5 of 5

..... Supply Shake 7g - Lmn Bean x Italian Ice (S) Lmn Bean x Italian Ice (S) Matrix : Flower Type: Flower-Cured



4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

## **Certificate of Analysis**

### PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Julio Chavez@crescolabs.com Sample : DA50331010-004 Harvest/Lot ID: 4671587524956524

Sampled : 03/31/25 Ordered : 03/31/25

Batch#: 4671587524956524 Sample Size Received: 5 units Total Amount : 1122 units Completed : 04/03/25 Expires: 04/03/26 Sample Method : SOP.T.20.010



Filth/Foreign **Material** 





PASSED

| Analyte<br>Filth and Fore                                           | ign Material                                         | <b>LOD</b><br>0.100 | Units<br>%             | <b>Result</b><br>ND | P/F<br>PASS         | Action Level      | 4            |
|---------------------------------------------------------------------|------------------------------------------------------|---------------------|------------------------|---------------------|---------------------|-------------------|--------------|
| Analyzed by:<br>1879, 585, 1440                                     | <b>Weight:</b><br>1g                                 |                     | action da<br>)2/25 09: |                     | <b>Ex</b> 1         | tracted by:<br>79 | A<br>4       |
|                                                                     |                                                      | rial Micro          | scope                  | Batch               | <b>Date :</b> 04/02 | 2/25 08:51:55     | A<br>A<br>II |
| Dilution : N/A<br>Reagent : N/A<br>Consumables : N<br>Pipette : N/A | I/A                                                  |                     |                        |                     |                     |                   | A<br>D<br>R  |
|                                                                     | naterial inspection is pe<br>cordance with F.S. Rule |                     |                        | spection utiliz     | ing naked ey        | e and microscope  | C<br>P       |
| $(\bigcirc)$                                                        | Water A                                              | ctiv                | ity                    |                     | PA                  | SSED              | Ν            |

| Analyte<br>Water Activity                                                                         |                            | <b>LOD</b><br>0.010 | <b>Units</b><br>aw     | Result<br>0.511 | P/F<br>PASS       | Action Level<br>0.65 |
|---------------------------------------------------------------------------------------------------|----------------------------|---------------------|------------------------|-----------------|-------------------|----------------------|
| Analyzed by:<br>4571, 585, 1440                                                                   | Weight:<br>0.268g          |                     | raction da<br>01/25 11 |                 |                   | racted by:<br>71,585 |
| Analysis Method : SOP<br>Analytical Batch : DA0<br>Instrument Used : DA-<br>Analyzed Date : 04/02 | 84941WAT<br>028 Rotronic H | lygropal            | m                      | Batch Da        | <b>te:</b> 04/01/ | 25 10:04:14          |
| Dilution : N/A<br>Reagent : N/A<br>Consumables : N/A<br>Pipette : N/A                             |                            |                     |                        |                 |                   |                      |

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

| Analyte                                                                                                                                     |                                                  | LOD | Units                           | Result | P/F  | Action Level                 |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----|---------------------------------|--------|------|------------------------------|
| Moisture Content                                                                                                                            |                                                  | 1.0 | %                               | 11.6   | PASS | 15                           |
| Analyzed by:<br>4571, 585, 1440                                                                                                             | <b>Weight:</b> 0.498g                            |     | <b>traction d</b><br>4/01/25 11 |        |      | tracted by:<br>571           |
| Analysis Method : SO<br>Analytical Batch : DA<br>Instrument Used : DA<br>Analyzer,DA-263 Mois<br>Moisture Analyzer<br>Analyzed Date : 04/02 | 084938MOI<br>-003 Moisture A<br>sture Analyser,I |     |                                 |        |      | <b>Date :</b> 04/01/25<br>53 |
| Dilution : N/A<br>Reagent : 092520.50<br>Consumables : N/A<br>Pipette : DA-066                                                              |                                                  |     |                                 |        |      |                              |

Moisture Content analysis utilizing loss-on-drying technology in accordance with F.S. Rule 64ER20-39

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

**Vivian Celestino** Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

1/2

Signature 04/03/25