

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

COMPLIANCE FOR RETAIL

SUNNYSIDE DA50325014-007

(INTERNAL)

Laboratory Sample ID: DA50325014-007

RESCO

Mar 28, 2025 | Sunnyside

Certificate of Analysis

Kaycha Labs

Cresco Live Budder 2g - PCG Pch (H) PCG Pch (H) Matrix: Derivative

Classification: High THC Type: Rosin Production Method: Other - Not Listed Harvest/Lot ID: 2152316609836866 Batch#: 2152316609836866 Cultivation Facility: FL - Indiantown (4430) Processing Facility : FL - Indiantown (4430) Source Facility: FL - Indiantown (4430) Seed to Sale#: 5971870033527351

Pages 1 of 6

Harvest Date: 03/14/25 Sample Size Received: 9 units

Total Amount: 252 units Retail Product Size: 2 gram

Servings: 1

PASSED

MISC.

Ordered: 03/25/25 Sampled: 03/25/25

Completed: 03/28/25 Sampling Method: SOP.T.20.010

SAFETY RESULTS

22205 Sw Martin Hwy indiantown, FL, 34956, US

모										
Г О	Ę	Нд	PE	လို	Ĩ		())		6
	•	ч <u> </u> р	N	مکه			, C			
Pestici PASS		avy Metals ASSED	Microbials PASSED	Mycotoxin: PASSED	s Residuals Solvents	Filth PASSED	Water A PASS		Moisture NOT TESTED	Terpenes TESTED
PASS		AJJED	FAJJED	FASSED	PASSED	FAJJED	r AJ.		NOT TESTED	
Ä	Cannak	oinoid							1	FESTE
	Total 70	тнс .8229	%		Total CBD 0.295	%		85	Cannabinoids)
	J Total T	HC/Container :	1416.440 mg	5 3	Total CBD/Contain	er : 5.900 mg	E	J _{Total 0} mg	Cannabinoids/Conta	iner : 1711.2
								-		
	D9-THC	тнса	CBD		08-THC CBG	CBGA	CBN	тнсу	CBDV	CBC
þ	0.971 19.42	79.648 1592.96	0.130 2.60		0.010 0.428 0.20 8.56	3.974 79.48	ND ND	0.146 2.92	ND ND	0.064 1.28
	13.42	1392.90	2.00	5.70	.20 0.30	75.40		2.92		
	0.001	0.001	0.001	0.001 0	.001 0.001	0.001	0.001	0.001	0.001	
	0.001 %	0.001 %	0.001 %		0.001 0.001 %	0.001 %	0.001 %	0.001 %	0.001 %	0.001 %
ng/unit .OD Myzed by: 15, 1665, 585	%					%				0.001
OD Ilyzed by: 5, 1665, 585 Ilysis Method	% 5, 1440 d : SOP.T.40.031, SO	%		% %	% % Extraction date	%			% Extracted by:	0.001
OD llyzed by: 5, 1665, 585 llysis Method llytical Batch crument Used	%	% DP.T.30.031		% %	% % Extraction date	%	%		% Extracted by:	0.001
lyzed by: 5, 1665, 585 lysis Method lytical Batch rument Used lyzed Date : ition : 400 gent : 0314/ sumables : 9	% ;, 1440 d: SOP.T.40.031, SI DA084723POT d: DA-LC-007 03/28/25 09:18:51 25.R04; 012725.02	% OP.T.30.031 ; 030725.R05 ; 062224CH01; 0000	%	% %	% % Extraction date	% e: 8:55	%		% Extracted by:	0.001
OD lyzed by: 5, 1665, 585 lysis Method lystical Batch rument Used lyzed Date : lyzed Date : lyze	% ;,1440 #: SOP.T.40.031, SG :: DA084723POT 03/28/25 09:18:51 25.R04; 012725.02 247.110; 04312111 9; DA-108; DA-078	% DP.T.30.031 ; 030725.R05 ; 062224CH01; 0000	%	% 9 Weight: 0.1142g	% % Extraction date	% e: 8:55	%		% Extracted by:	0.001

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 54-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 03/28/25

Cresco Live Budder 2g - PCG Pch (H) PCG Pch (H) Matrix : Derivative Type: Rosin

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

PASSED

TESTED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50325014-007 Harvest/Lot ID: 2152316609836866 Batch#: 2152316609836866 Sample Size Received: 9 units Sampled : 03/25/25 Ordered : 03/25/25

Total Amount : 252 units Completed : 03/28/25 Expires: 03/28/26 Sample Method : SOP.T.20.010

Page 2 of 6

Terpenes

lerpenes	LOD (%)	Pass/Fail	mg/unit	Result (%)		Terpenes	LOD (%)			Result (%)	
OTAL TERPENES	0.007	TESTED	119.30	5.965		NEROL	0.007	TESTED	ND	ND	
MONENE	0.007	TESTED	26.72	1.336		PULEGONE	0.007	TESTED	ND	ND	
TA-CARYOPHYLLENE	0.007	TESTED	21.02	1.051		SABINENE	0.007	TESTED	ND	ND	
TA-MYRCENE	0.007	TESTED	17.62	0.881		VALENCENE	0.007	TESTED	ND	ND	
PHA-BISABOLOL	0.007	TESTED	9.96	0.498		ALPHA-CEDRENE	0.005	TESTED	ND	ND	
IALOOL	0.007	TESTED	9.52	0.476		ALPHA-PHELLANDRENE	0.007	TESTED	ND	ND	
PHA-HUMULENE	0.007	TESTED	8.42	0.421		ALPHA-TERPINENE	0.007	TESTED	ND	ND	
AIOL	0.007	TESTED	5.28	0.264		CIS-NEROLIDOL	0.003	TESTED	ND	ND	
TA-PINENE	0.007	TESTED	3.68	0.184	1	Analyzed by:	Weigh	nt:	Extractio	on date:	Extracted by:
NCHYL ALCOHOL	0.007	TESTED	2.72	0.136		4451, 4444, 585, 1440	0.205	9	03/26/25	5 09:59:22	4451
PHA-PINENE	0.007	TESTED	2.42	0.121		Analysis Method : SOP.T.30.061A.FL, SOP.T.40.061A.F					
PHA-TERPINEOL	0.007	TESTED	2.24	0.112		Analytical Batch : DA084728TER Instrument Used : DA-GCMS-004				Batch Date : 03/26/25 08:42:55	
RNESENE	0.001	TESTED	1.78	0.089		Analyzed Date : 03/28/25 09:22:24				DECH DECE : 03/20/23 00.42.33	
RNEOL	0.013	TESTED	1.70	0.085		Dilution: 10					
ANS-NEROLIDOL	0.005	TESTED	1.30	0.065		Reagent : 022525.47					
RYOPHYLLENE OXIDE	0.007	TESTED	0.98	0.049		Consumables : 947.110; 04312111; 2240626; 000035 Pipette : DA-065	5309				
PHA-TERPINOLENE	0.007	TESTED	0.76	0.038		Terpenoid testing is performed utilizing Gas Chromatography	Mana Canadananaha	Fee all Flavora an	males the Tetal	Transmiss N is do a solidat associated	
MPHENE	0.007	TESTED	0.74	0.037		Terpenoid testing is performed utilizing Gas Unromatography	Mass Spectrometry	. For all Flower sa	mpres, the Total	Terpenes % is dry-weight corrected.	
CHONE	0.007	TESTED	0.74	0.037							
MENE	0.007	TESTED	0.68	0.034							
BINENE HYDRATE	0.007	TESTED	0.56	0.028							
MMA-TERPINENE	0.007	TESTED	0.46	0.023							
ARENE	0.007	TESTED	ND	ND							
MPHOR	0.007	TESTED	ND	ND							
DROL	0.007	TESTED	ND	ND							
CALYPTOL	0.007	TESTED	ND	ND							
RANIOL	0.007	TESTED	ND	ND							
ANYL ACETATE	0.007	TESTED	ND	ND							
AHYDROTHYMOL	0.007	TESTED	ND	ND							
DBORNEOL	0.007	TESTED	ND	ND							
	0.007	TESTED	ND	ND							

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 03/28/25

Cresco Live Budder 2g - PCG Pch (H) PCG Pch (H) Matrix : Derivative Type: Rosin

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com

Sample : DA50325014-007 Harvest/Lot ID: 2152316609836866

Sampled : 03/25/25 Ordered : 03/25/25

Batch#: 2152316609836866 Sample Size Received: 9 units Total Amount : 252 units Completed : 03/28/25 Expires: 03/28/26 Sample Method : SOP.T.20.010

Page 3 of 6

Pesticides

Pesticide	LOD	Units	Action Level	Pass/Fail	Result	Pesticide		LOD	Units	Action Level	Pass/Fail	Result
TOTAL CONTAMINANT LOAD (PESTICIDES)	0.010		5	PASS	ND	OXAMYL		0.010	ppm	0.5	PASS	ND
TOTAL DIMETHOMORPH	0.010	ppm	0.2	PASS	ND	PACLOBUTRAZOL	0.010	ppm	0.1	PASS	ND	
TOTAL PERMETHRIN	0.010	ppm	0.1	PASS	ND	PHOSMET		0.010	maa	0.1	PASS	ND
OTAL PYRETHRINS	0.010		0.5	PASS	ND	PIPERONYL BUTOXIDE		0.010		3	PASS	ND
OTAL SPINETORAM	0.010		0.2	PASS	ND	PRALLETHRIN		0.010		0.1	PASS	ND
TOTAL SPINOSAD	0.010	ppm	0.1	PASS	ND					0.1	PASS	ND
BAMECTIN B1A	0.010		0.1	PASS	ND	PROPICONAZOLE		0.010				
CEPHATE	0.010		0.1	PASS	ND	PROPOXUR		0.010		0.1	PASS	ND
CEQUINOCYL	0.010	ppm	0.1	PASS	ND	PYRIDABEN		0.010	ppm	0.2	PASS	ND
CETAMIPRID	0.010		0.1	PASS	ND	SPIROMESIFEN		0.010	ppm	0.1	PASS	ND
ALDICARB	0.010		0.1	PASS	ND	SPIROTETRAMAT		0.010	ppm	0.1	PASS	ND
ZOXYSTROBIN	0.010		0.1	PASS	ND	SPIROXAMINE		0.010	ppm	0.1	PASS	ND
BIFENAZATE	0.010		0.1	PASS	ND	TEBUCONAZOLE		0.010	ppm	0.1	PASS	ND
BIFENTHRIN	0.010		0.1	PASS	ND	THIACLOPRID		0.010	maa	0.1	PASS	ND
BOSCALID	0.010		0.1	PASS	ND	THIAMETHOXAM		0.010		0.5	PASS	ND
CARBARYL	0.010		0.5	PASS	ND	TRIFLOXYSTROBIN		0.010		0.1	PASS	ND
CARBOFURAN	0.010		0.1	PASS	ND		CND) *	0.010		0.15	PASS	ND
CHLORANTRANILIPROLE	0.010		1	PASS	ND	PENTACHLORONITROBENZENE (P	CNB) *			0.13	PASS	ND
CHLORMEQUAT CHLORIDE	0.010		1	PASS	ND	PARATHION-METHYL *		0.010				
CHLORPYRIFOS	0.010		0.1	PASS	ND	CAPTAN *		0.070		0.7	PASS	ND
CLOFENTEZINE	0.010		0.2	PASS	ND	CHLORDANE *		0.010		0.1	PASS	ND
COUMAPHOS	0.010		0.1	PASS	ND	CHLORFENAPYR *		0.010	ppm	0.1	PASS	ND
DAMINOZIDE	0.010		0.1	PASS	ND	CYFLUTHRIN *		0.050	ppm	0.5	PASS	ND
DIAZINON	0.010		0.1	PASS	ND	CYPERMETHRIN *		0.050	ppm	0.5	PASS	ND
DICHLORVOS	0.010		0.1	PASS	ND	Analyzed by: W	/eight:	Extractio	n date:		Extracted by	
DIMETHOATE	0.010		0.1	PASS	ND		.2487g	03/26/25			450,3621,585	
ETHOPROPHOS	0.010		0.1	PASS	ND	Analysis Method : SOP.T.30.102.FL,	, SOP.T.40.102.I	L				
TOFENPROX	0.010		0.1	PASS	ND	Analytical Batch : DA084730PES						
ETOXAZOLE	0.010		0.1	PASS	ND	Instrument Used : DA-LCMS-005 (PI	ES)		Batch	Date :03/26/2	25 08:52:45	
FENHEXAMID	0.010		0.1	PASS	ND	Analyzed Date :03/27/25 09:40:21						
ENOXYCARB	0.010		0.1	PASS	ND	Dilution : 250 Reagent : 032225.R01; 081023.01						
FENPYROXIMATE	0.010		0.1	PASS	ND	Consumables : 040724CH01; 22103	21DD					
FIPRONIL	0.010		0.1	PASS	ND	Pipette : N/A						
LONICAMID	0.010		0.1	PASS	ND	Testing for agricultural agents is perfo	ormed utilizing L	quid Chron	atography Tri	ple-Quadrupol	e Mass Spectron	metry in
LUDIOXONIL	0.010		0.1	PASS	ND	accordance with F.S. Rule 64ER20-39.						
IEXYTHIAZOX	0.010		0.1	PASS	ND	Analyzed by:	Weight:		ction date:		Extracted b	
MAZALIL	0.010		0.1	PASS	ND	4640, 450, 585, 1440	0.2487g		5/25 11:26:40		450,3621,5	85
MIDACLOPRID	0.010		0.4	PASS	ND	Analysis Method : SOP.T.30.151A.F	L, SOP.T.40.151	.FL				
RESOXIM-METHYL	0.010		0.1	PASS	ND	Analytical Batch : DA084731VOL Instrument Used : DA-GCMS-011			Ratch Da	te:03/26/25	08-54-45	
ALATHION	0.010		0.2	PASS	ND	Analyzed Date :03/27/25 09:38:04			Datcii Da	NC 103/20/23	00.34.43	
IETALAXYL	0.010		0.1	PASS	ND	Dilution : 250						
IETHIOCARB	0.010		0.1	PASS	ND	Reagent : 032225.R01; 081023.01;	031025.R43; 0	31025.R44				
IETHOMYL	0.010		0.1	PASS	ND	Consumables : 040724CH01; 2210						
IEVINPHOS	0.010		0.1	PASS	ND	Pipette : DA-080; DA-146; DA-218						
IYCLOBUTANIL	0.010		0.1	PASS	ND	Testing for agricultural agents is perfo		as Chromai	ography Tripl	e-Quadrupole I	Mass Spectrome	etry in
NALED	0.010	ppm	0.25	PASS	ND	accordance with F.S. Rule 64ER20-39.						

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 03/28/25

PASSED

PASSED

Cresco Live Budder 2g - PCG Pch (H) PCG Pch (H) Matrix : Derivative Type: Rosin

PASSED

PASSED

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50325014-007 Harvest/Lot ID: 2152316609836866 Batch#: 2152316609836866 Sample Size Received: 9 units Sampled : 03/25/25 Ordered : 03/25/25

Total Amount : 252 units Completed : 03/28/25 Expires: 03/28/26 Sample Method : SOP.T.20.010

Page 4 of 6

Residual Solvents

Solvents	LOD	Units	Action Level	Pass/Fail	Result
1,1-DICHLOROETHENE	0.800	ppm	8	PASS	ND
1,2-DICHLOROETHANE	0.200	ppm	2	PASS	ND
2-PROPANOL	50.000	ppm	500	PASS	ND
ACETONE	75.000	ppm	750	PASS	ND
CETONITRILE	6.000	ppm	60	PASS	ND
BENZENE	0.100	ppm	1	PASS	< 0.500
BUTANES (N-BUTANE)	500.000	ppm	5000	PASS	2698.657
CHLOROFORM	0.200	ppm	2	PASS	ND
DICHLOROMETHANE	12.500	ppm	125	PASS	ND
THANOL	500.000	ppm	5000	PASS	ND
THYL ACETATE	40.000	ppm	400	PASS	ND
THYL ETHER	50.000	ppm	500	PASS	ND
THYLENE OXIDE	0.500	ppm	5	PASS	ND
IEPTANE	500.000	ppm	5000	PASS	ND
IETHANOL	25.000	ppm	250	PASS	ND
HEXANE	25.000	ppm	250	PASS	ND
ENTANES (N-PENTANE)	75.000	ppm	750	PASS	ND
PROPANE	500.000	ppm	5000	PASS	ND
TOLUENE	15.000	ppm	150	PASS	ND
TOTAL XYLENES	15.000	ppm	150	PASS	ND
RICHLOROETHYLENE	2.500	ppm	25	PASS	ND
nalyzed by: 50, 585, 1440	Weight: 0.0227g	Extraction date: 03/27/25 12:21:35			xtracted by: 50
Analysis Method : SOP.T.40.041.FL Analytical Batch : DA084743SOL nstrument Used : DA-GCMS-002 Analyzed Date : 03/27/25 13:06:56			Batch Date : 03/26/25	16:17:41	

Reagent : 030420.09 Consumables : 430596: 319008 Pipette : DA-309 25 uL Syringe 35028

Residual solvents analysis is performed utilizing Gas Chromatography Mass Spectrometry in accordance with with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 03/28/25

Cresco Live Budder 2g - PCG Pch (H) PCG Pch (H) Matrix : Derivative Type: Rosin

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50325014-007 Harvest/Lot ID: 2152316609836866

Sampled : 03/25/25 Ordered : 03/25/25

Batch#: 2152316609836866 Sample Size Received: 9 units Total Amount : 252 units Completed : 03/28/25 Expires: 03/28/26 Sample Method : SOP.T.20.010

	Pag	е	5	of	6
--	-----	---	---	----	---

G	Micro	bial				PAS	SED	ۍ پې	M	ycotox	ins			PAS	SED
Analyte		LC	D	Units	Result	Pass / Fail	Action Level	Analyte			LOD	Units	Result	Pass / Fail	Action Level
ASPERGILLUS	5 TERREUS				Not Present	PASS		AFLATOXIN	82		0.002	ppm	ND	PASS	0.02
ASPERGILLUS					Not Present	PASS		AFLATOXIN	81		0.002		ND	PASS	0.02
ASPERGILLUS	5 FUMIGATUS				Not Present	PASS		OCHRATOXI	A		0.002	ppm	ND	PASS	0.02
ASPERGILLUS	5 FLAVUS				Not Present	PASS		AFLATOXIN	G1		0.002	ppm	ND	PASS	0.02
SALMONELLA	SPECIFIC GEN	E			Not Present	PASS		AFLATOXIN	G2		0.002	ppm	ND	PASS	0.02
ECOLI SHIGE	LA				Not Present	PASS		Analyzed by:		Weight:	Extraction date		Evi	tracted by	
TOTAL YEAST	AND MOLD	1	0	CFU/g	<10	PASS	100000	3621, 585, 144	0	0.2487g	03/26/25 11:2			0,3621,58	
nalyzed by: 044, 4520, 58	5, 1440	Weight: 1.058g		traction da /26/25 09:		Extracted 4520,404		Analytical Bate	:h : DA08						_
	d:SOP.T.40.056 h:DA084716MI0		.058.	FL, SOP.T.	40.209.FL			Instrument Us Analyzed Date		_CMS-005 (MYC) 25 09:41:20	E	atch Date	:03/26/2	5 08:56:1	0
2720 Thermocy (95*C) DA-049,	d : PathogenDx : /cler DA-010,Fish DA-402 Thermo : 03/27/25 09:35	ner Scientifi Scientific H	c Isot	emp Heat	Block 07:	ch Date : 03 45:17	5/20/25	Dilution : 250 Reagent : 032 Consumables : Pipette : N/A		; 081023.01 CH01; 221021DI)				
Dilution : 10 Reagent : 0201 Consumables : Pipette : N/A	25.07; 013025.1 7581001062	.4; 031525.	R03; (093024.02				Mycotoxins tes accordance wit	h F.S. Rule			e-Quadrupc			
Analyzed by: 044, 4571, 58	5, 1440	Weight: 1.058g		traction da /26/25 09:		Extracted 4520,404		[Hg]	He	eavy M	etals			PAS	SEC
Analytical Batc nstrument Use	d : SOP.T.40.209 h : DA084719TYI d : Incubator (25	N	8 [cali	ibrated wit	h Batch Da	te:03/26/2	5 07:49:20	Metal		NT LOAD META	LOD	Units	Result	Pass / Fail PASS	Action Level
DA-382]	: 03/28/25 11:34	-13						ARSENIC	APUIDA	IT LOAD META	0.020		ND	PASS	0.2
,	. 03/20/23 11.34	.15									0.020		ND	PASS	0.2
ilution: 10	25.07; 013025.1	1.022625	253					MERCURY			0.020	1.1.	ND	PASS	0.2
consumables :		.4, 022025.1	100					LEAD				ppm	ND	PASS	0.5
	nold testing is perf		ng MPN	V and traditi	onal culture base	d techniques	in	Analyzed by: 1022, 585, 144	,0	Weight: 0.2818g	Extraction da 03/26/25 10:			Extracted 4056	by:
ccordance with	F.S. Rule 64ER20-3	39.						Analysis Metho Analytical Bato Instrument Us Analyzed Date	ch : DA08 ed : DA-I	CPMS-004		ch Date : ()3/26/25 0	9:23:55	
								Dilution : 50 Reagent : 032 120324.07; 03	525.R31; 1725.R1 040724	; 031725.R14; 03 15 CH01; J609879-0		525.R30; ()32425.R0	15; 03242	5.R06;

Pipette : DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 03/28/25

Page 6 of 6

Cresco Live Budder 2g - PCG Pch (H) PCG Pch (H) Matrix : Derivative Type: Rosin

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

PASSED

Sunnyside

 \bigcirc

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50325014-007 Harvest/Lot ID: 2152316609836866 Batch#: 2152316609836866 Sample Size Received: 9 units Sampled : 03/25/25

Total Amount : 252 units Ordered : 03/25/25 Completed : 03/28/25 Expires: 03/28/26 Sample Method : SOP.T.20.010

	Filth/For Material		n		ΡΑ	SSED
Analyte Filth and Foreig	gn Material	LOD 0.100	Units %	Result ND	P/F PASS	Action Level
Analyzed by: 1879, 585, 1440	Weight: 1g		action dat 26/25 11:2		Ex 1	tracted by: 79
		ial Micro	scope	Batch D)ate : 03/20	6/25 11:00:59
Dilution : N/A Reagent : N/A Consumables : N/ Pipette : N/A	A					
	aterial inspection is per ordance with F.S. Rule			pection utilizi	ng naked ey	e and microscope
\bigcirc	Water A	ctiv	ity		ΡΑ	SSED
Analyte Water Activity		LOD 0.010	Units aw	Result 0.467	P/F PASS	Action Level 0.85

-			
Analyzed by: 4797, 585, 1440	Weight: 0.753g	Extraction date: 03/26/25 11:15:25	Extracted by: 4797,585
Analysis Method : SOF Analytical Batch : DAG Instrument Used : DA- Analyzed Date : 03/27	84718WAT 028 Rotronic Hy	gropalm Batch Da	te:03/26/25 07:47:16
Dilution : N/A Reagent : 101724.36 Consumables : PS-14 Pipette : N/A			
Water Activity is perform	a di calinaria Di Amani	- Users Deles UD 22 AWGs	law and with E.C. Dulla CAEDOO OO

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature

03/28/25