

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

COMPLIANCE FOR RETAIL

Laboratory Sample ID: DA50314007-012

Certificate of Analysis

Kaycha Labs

Supply Vape Cartridge 500mg - Garlic Cks (H) Garlic Cks (H) Matrix: Derivative Classification: High THC

Classification: High THC Type: Distillate Production Method: Other - Not Listed Harvest/Lot ID: 0467502457639640 Batch#: 0467502457639640 Cultivation Facility: FL - Indiantown (4430) Processing Facility : FL - Indiantown (4430) Source Facility: FL - Indiantown (4430) Seed to Sale#: 0440422075012990 Harvest Date: 03/10/25 Sample Size Received: 31 units Total Amount: 360 units Retail Product Size: 0.5 gram

Retail Serving Size: 0.5 gram Servings: 1

- Ordered: 03/14/25 Sampled: 03/14/25
- **Completed:** 03/18/25

Sampling Method: SOP.T.20.010

Pages 1 of 6

PASSED

MISC

Mar 18, 2025 | Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US

SAFETY RESULTS

R 0	[]	Нд	Ċ,	ڳ	Ä		\bigcirc		Ô
Pestici PASS		vy Metals ASSED	Microbials PASSED	Mycotoxins PASSED	Residuals Solvents PASSED	Filth PASSED	Water Activit PASSED	y Moisture NOT TESTED	Terpenes TESTED
Ä	Cannab	inoid							TESTE
	Total 90 Total T	THC .371 HC/Container :			Total CBD 0.186% Total CBD/Container :			otal Cannabinoids)
							m	g	
	D9-THC	тнса	CBD	CBDA D8-THO		CBGA	CBN THCV		СВС
	90.290	0.093	0.186	ND ND	3.268	ND	0.905 0.4	09 ND	0.127
mg/unit	90.290 451.45	0.093 0.47	0.186 0.93	ND ND ND ND	3.268 16.34	ND ND	0.9050.44.532.0	09 ND 5 ND	0.127 0.64
mg/unit	90.290	0.093	0.186	ND ND	3.268 16.34	ND	0.905 0.4	09 ND 5 ND	0.127
	90.290 451.45 0.001 %	0.093 0.47 0.001	0.186 0.93 0.001	ND ND ND ND 0.001 0.00 % %	3.268 16.34 1 0.001 % Extraction date:	ND ND 0.001 %	0.9050.44.532.00.0010.0	09 ND 5 ND 01 0.001	0.127 0.64 0.001
mg/unit LOD nalyzed by: 335, 1665, 585 nalysis Method	90.290 451.45 0.001 % 5, 1440 rd : SOP.T.40.031, SC	0.093 0.47 0.001 %	0.186 0.93 0.001	ND ND ND ND 0.001 0.00 % %	3.268 16.34 1 0.001 %	ND ND 0.001 %	0.9050.44.532.00.0010.0	09 ND 5 ND 01 0.001 % Extracted by:	0.127 0.64 0.001
mg/unit LOD halyzed by: 135, 1665, 585 halysis Methor halytical Batch strument Use	90.290 451.45 0.001 % 5, 1440	0.093 0.47 0.001 %	0.186 0.93 0.001	ND ND ND ND 0.001 0.00 % %	3.268 16.34 1 0.001 % Extraction date: 03/17/25 11:47:03	ND ND 0.001 %	0.905 0.4 4.53 2.0 0.001 0.0 % %	09 ND 5 ND 01 0.001 % Extracted by:	0.127 0.64 0.001
mg/unit LOD 135, 1665, 585 135, 1665, 585 135, 1665, 585 131, 135, 1665, 585 131, 135, 1665, 135 135, 1655, 1555,	90.290 451.45 0.001 % 5,1440 bd: SOP.T.40.031, SCC h: DA084416POT d: DA-1C-003	0.093 0.47 0.001 %	0.186 0.93 0.001 %	ND ND ND ND 0.001 0.00 % %	3.268 16.34 1 0.001 % Extraction date: 03/17/25 11:47:03	ND ND 0.001 %	0.905 0.4 4.53 2.0 0.001 0.0 % %	09 ND 5 ND 01 0.001 % Extracted by:	0.127 0.64 0.001
mg/unit LOD alyzed by: 35, 1665, 585 alysis Method alytical Batch strument Use alyzed Date : lution : 400 agent : 0307 insumables : pette : DA-07	90.290 451.45 0.001 % 5,1440 bd : SOP.T.40.031, SC h : DA084416POT di : DA.LC-003 : 03/18/25 08:10:35 725.R02; 012725.02; 947.110; 04312111; 79; DA-108; DA-078	0.093 0.47 0.001 %	0.186 0.93 0.001 %	ND ND ND ND 0.001 0.00 % %	3.268 16.34 1 0.001 % Extraction date: 03/17/25 11:47:0:	ND ND 0.001 %	0.905 0.4 4.53 2.0 0.001 0.0 % %	09 ND 5 ND 01 0.001 % Extracted by:	0.127 0.64 0.001

Sunnyside*

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 03/18/25

Supply Vape Cartridge 500mg - Garlic Cks (H) Garlic Cks (H) Matrix : Derivative

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

PASSED

TESTED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50314007-012 Harvest/Lot ID: 0467502457639640 Batch#:0467502457639640 Sample Size Received: 31 units Sampled : 03/14/25 Ordered : 03/14/25

Total Amount : 360 units Completed : 03/18/25 Expires: 03/18/26 Sample Method : SOP.T.20.010

Page 2 of 6

෯	

Terpenes

Terpenes	LOD (%)	Pass/Fail	mg/unit	Result (%)	Terpenes	LOD (%)	Pass/Fail		Result (%)	
TOTAL TERPENES	0.007	TESTED	18.51	3.702	ISOPULEGOL	0.007	TESTED	ND	ND	
ETA-CARYOPHYLLENE	0.007	TESTED	5.04	1.008	PULEGONE	0.007	TESTED	ND	ND	
IMONENE	0.007	TESTED	4.80	0.960	SABINENE	0.007	TESTED	ND	ND	
ETA-MYRCENE	0.007	TESTED	1.70	0.339	SABINENE HYDRATE	0.007	TESTED	ND	ND	
LPHA-HUMULENE	0.007	TESTED	1.54	0.307	ALPHA-CEDRENE	0.005	TESTED	ND	ND	
ALENCENE	0.007	TESTED	0.56	0.112	ALPHA-TERPINENE	0.007	TESTED	ND	ND	
INALOOL	0.007	TESTED	0.56	0.111	CIS-NEROLIDOL	0.003	TESTED	ND	ND	
LPHA-BISABOLOL	0.007	TESTED	0.49	0.097	GAMMA-TERPINENE	0.007	TESTED	ND	ND	
ALPHA-TERPINOLENE	0.007	TESTED	0.49	0.097	Analyzed by:	Weight:		Extraction date	1	Extracted by
BETA-PINENE	0.007	TESTED	0.48	0.096	4451, 585, 1440	0.2079g		03/17/25 10:3	5:47	4451
ENCHYL ALCOHOL	0.007	TESTED	0.46	0.091	Analysis Method : SOP.T.30.061A.FL, SOP.T.40	0.061A.FL				
LPHA-PINENE	0.007	TESTED	0.37	0.073	Analytical Batch : DA084391TER Instrument Used : DA-GCMS-008				Batch Date : 03/15/25 12:33:06	
IEROL	0.007	TESTED	0.36	0.072	Analyzed Date : 03/18/25 08:54:32				Batch Date 103/15/25 12:33:06	
RANS-NEROLIDOL	0.005	TESTED	0.25	0.050	Dilution : 10					
ARNESENE	0.007	TESTED	0.23	0.045	Reagent : N/A					
ERANYL ACETATE	0.007	TESTED	0.21	0.042	Consumables : 947.110; 04402004; 2240626;	; 0000355309				
LPHA-TERPINEOL	0.007	TESTED	0.19	0.038	Pipette : DA-065					
CIMENE	0.007	TESTED	0.19	0.037	Terpenoid testing is performed utilizing Gas Chroma	atography Mass Spectrometry	y. For all Flower s	amples, the Tota	I Terpenes % is dry-weight corrected.	
ENCHONE	0.007	TESTED	0.17	0.033						
AMPHENE	0.007	TESTED	0.16	0.032						
CARENE	0.007	TESTED	0.11	0.021						
PHA-PHELLANDRENE	0.007	TESTED	0.11	0.021						
AMPHOR	0.007	TESTED	0.10	0.020						
ORNEOL	0.013	TESTED	ND	ND						
ARYOPHYLLENE OXIDE	0.007	TESTED	ND	ND						
EDROL	0.007	TESTED	ND	ND						
UCALYPTOL	0.007	TESTED	ND	ND						
ERANIOL	0.007	TESTED	ND	ND						
UAIOL	0.007	TESTED	ND	ND						
IEXAHYDROTHYMOL	0.007	TESTED	ND	ND						
SOBORNEOL	0.007	TESTED	ND	ND						

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 03/18/25

Supply Vape Cartridge 500mg - Garlic Cks (H) Garlic Cks (H) Matrix : Derivative

PASSED

PASSED

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50314007-012 Harvest/Lot ID: 0467502457639640

Sampled : 03/14/25 Ordered : 03/14/25

Batch#:0467502457639640 Sample Size Received: 31 units Total Amount : 360 units Completed : 03/18/25 Expires: 03/18/26 Sample Method : SOP.T.20.010

Page 3 of 6

Pesticides

Pesticide	LOD	Units	Action	Pass/Fail	Result	Pesticide		LOD	Units	Action	Pass/Fail	Result
			Level							Level		
TOTAL CONTAMINANT LOAD (PESTICIDES)	0.010		5	PASS	ND	OXAMYL		0.010	ppm	0.5	PASS	ND
TOTAL DIMETHOMORPH	0.010		0.2	PASS	ND	PACLOBUTRAZOL		0.010	ppm	0.1	PASS	ND
TOTAL PERMETHRIN	0.010	1.1.	0.1	PASS	ND	PHOSMET		0.010	ppm	0.1	PASS	ND
TOTAL PYRETHRINS	0.010		0.5	PASS	ND	PIPERONYL BUTOXIDE		0.010	maa	3	PASS	ND
TOTAL SPINETORAM	0.010		0.2	PASS	ND	PRALLETHRIN		0.010		0.1	PASS	ND
TOTAL SPINOSAD	0.010		0.1	PASS	ND	PROPICONAZOLE		0.010		0.1	PASS	ND
ABAMECTIN B1A	0.010		0.1	PASS	ND					0.1	PASS	ND
ACEPHATE	0.010		0.1	PASS	ND	PROPOXUR		0.010				
ACEQUINOCYL	0.010		0.1	PASS	ND	PYRIDABEN		0.010		0.2	PASS	ND
ACETAMIPRID	0.010		0.1	PASS	ND	SPIROMESIFEN		0.010		0.1	PASS	ND
ALDICARB	0.010		0.1	PASS	ND	SPIROTETRAMAT		0.010	ppm	0.1	PASS	ND
AZOXYSTROBIN	0.010		0.1	PASS	ND	SPIROXAMINE		0.010	ppm	0.1	PASS	ND
BIFENAZATE	0.010		0.1	PASS	ND	TEBUCONAZOLE		0.010	ppm	0.1	PASS	ND
BIFENTHRIN	0.010		0.1	PASS	ND	THIACLOPRID		0.010	ppm	0.1	PASS	ND
BOSCALID	0.010		0.1	PASS	ND	THIAMETHOXAM		0.010	maa	0.5	PASS	ND
CARBARYL	0.010		0.5	PASS	ND	TRIFLOXYSTROBIN		0.010		0.1	PASS	ND
CARBOFURAN	0.010		0.1	PASS	ND	PENTACHLORONITROBENZENE	(DCNR) *	0.010	1.1.	0.15	PASS	ND
CHLORANTRANILIPROLE	0.010		1	PASS	ND		: (PCNB) *			0.15	PASS	ND
CHLORMEQUAT CHLORIDE	0.010		1	PASS	ND	PARATHION-METHYL *		0.010				
CHLORPYRIFOS	0.010		0.1	PASS	ND	CAPTAN *		0.070		0.7	PASS	ND
CLOFENTEZINE	0.010		0.2	PASS	ND	CHLORDANE *		0.010		0.1	PASS	ND
COUMAPHOS	0.010		0.1	PASS	ND	CHLORFENAPYR *		0.010	ppm	0.1	PASS	ND
DAMINOZIDE	0.010		0.1	PASS	ND	CYFLUTHRIN *		0.050	ppm	0.5	PASS	ND
DIAZINON	0.010		0.1	PASS	ND	CYPERMETHRIN *		0.050	ppm	0.5	PASS	ND
DICHLORVOS	0.010		0.1	PASS	ND	Analyzed by:	Weight:	Extractio	1 date:		Extracted by:	
DIMETHOATE	0.010		0.1	PASS	ND	3621, 585, 1440	0.2491g	03/16/25			4640,3379,585	5
ETHOPROPHOS	0.010	T P	0.1	PASS	ND	Analysis Method : SOP.T.30.102	2.FL, SOP.T.40.102	.FL				
ETOFENPROX	0.010		0.1	PASS	ND	Analytical Batch : DA084373PE						
ETOXAZOLE	0.010		0.1	PASS	ND	Instrument Used : DA-LCMS-00			Batch	Date :03/15	/25 11:32:01	
FENHEXAMID	0.010		0.1	PASS	ND	Analyzed Date :03/18/25 08:16	:40					
FENOXYCARB	0.010		0.1	PASS	ND	Dilution : 250 Reagent : 031125.R21; 031025	P03-031425 P17	· 031/25 PO	5. 012025 PC	1. 031025 P	01-081023-01	
FENPYROXIMATE	0.010		0.1	PASS	ND	Consumables : 6822423-02	.1(05, 051425.1(17	, 031423.110	5, 012525.10	1, 051025.10	51, 001025.01	
FIPRONIL	0.010		0.1	PASS	ND	Pipette : DA-093; DA-094; DA-2	19					
FLONICAMID	0.010	1.1.	0.1	PASS	ND	Testing for agricultural agents is p	performed utilizing	Liquid Chron	natography Tr	iple-Quadrupo	le Mass Spectror	netry in
FLUDIOXONIL	0.010		0.1	PASS	ND	accordance with F.S. Rule 64ER20	-39.					
HEXYTHIAZOX	0.010		0.1	PASS	ND	Analyzed by:	Weight:		ction date:		Extracted b	
IMAZALIL	0.010	1.1.	0.1	PASS	ND	4640, 450, 585, 1440	0.2491g		/25 13:41:57		4640,3379,5	85
IMIDACLOPRID	0.010		0.4	PASS	ND	Analysis Method : SOP.T.30.151 Analytical Batch : DA084375V0		J.FL				
KRESOXIM-METHYL	0.010		0.1	PASS	ND	Instrument Used : DA-GCMS-01			Batch Da	te:03/15/25	11.33.48	
MALATHION	0.010		0.2	PASS	ND	Analyzed Date :03/18/25 08:14			parent pr			
METALAXYL	0.010		0.1	PASS	ND	Dilution: 250						
METHIOCARB	0.010		0.1	PASS	ND	Reagent: 031425.R17; 081023						
METHOMYL	0.010		0.1		ND	Consumables : 6822423-02; 04		601				
MEVINPHOS	0.010	1.1.	0.1	PASS	ND	Pipette : DA-080; DA-146; DA-2						
MYCLOBUTANIL	0.010		0.1	PASS	ND	Testing for agricultural agents is p accordance with F.S. Rule 64ER20		Gas Chromai	tography Tripl	e-Quadrupole	Mass Spectrome	try in
NALED	0.010	ppm	0.25	PASS	ND	accordance with F.S. Kulé 64ER20	1-23.					

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature

03/18/25

Supply Vape Cartridge 500mg - Garlic Cks (H) Garlic Cks (H) Matrix : Derivative Type: Distillate

PASSED

PASSED

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50314007-012 Harvest/Lot ID: 0467502457639640 Batch#:0467502457639640 Sample Size Received: 31 units Sampled : 03/14/25 Ordered : 03/14/25

Total Amount : 360 units Completed : 03/18/25 Expires: 03/18/26 Sample Method : SOP.T.20.010

Page 4 of 6

Residual Solvents

Solvents	LOD	Units	Action Level	Pass/Fail	Result	
L,1-DICHLOROETHENE	0.800	ppm	8	PASS	ND	
L,2-DICHLOROETHANE	0.200	ppm	2	PASS	ND	
2-PROPANOL	50.000	ppm	500	PASS	ND	
ACETONE	75.000	ppm	750	PASS	ND	
CETONITRILE	6.000	ppm	60	PASS	ND	
BENZENE	0.100	ppm	1	PASS	ND	
BUTANES (N-BUTANE)	500.000	ppm	5000	PASS	ND	
CHLOROFORM	0.200	ppm	2	PASS	ND	
DICHLOROMETHANE	12.500	ppm	125	PASS	ND	
THANOL	500.000	ppm	5000	PASS	ND	
THYL ACETATE	40.000	ppm	400	PASS	ND	
THYL ETHER	50.000	ppm	500	PASS	ND	
THYLENE OXIDE	0.500	ppm	5	PASS	ND	
IEPTANE	500.000	ppm	5000	PASS	ND	
IETHANOL	25.000	ppm	250	PASS	ND	
-HEXANE	25.000	ppm	250	PASS	ND	
ENTANES (N-PENTANE)	75.000	ppm	750	PASS	ND	
ROPANE	500.000	ppm	5000	PASS	ND	
OLUENE	15.000	ppm	150	PASS	ND	
TOTAL XYLENES	15.000	ppm	150	PASS	ND	
RICHLOROETHYLENE	2.500	ppm	25	PASS	ND	
nalyzed by: 50, 585, 1440	Weight: 0.0221g	Extraction date: 03/17/25 14:41:29		E x 85	tracted by: 50	
nalysis Method : SOP.T.40.041.FL nalytical Batch : DA084400SOL nstrument Used : DA-GCMS-002 nalyzed Date : 03/18/25 07:48:43		Batch Date : 03/15/25 14:52:18				

Reagent : 030420.09 Consumables : 430596: 319008 Pipette : DA-309 25 uL Syringe 35028

Residual solvents analysis is performed utilizing Gas Chromatography Mass Spectrometry in accordance with with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 03/18/25

Supply Vape Cartridge 500mg - Garlic Cks (H) Garlic Cks (H) Matrix : Derivative

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50314007-012 Harvest/Lot ID: 0467502457639640

Sampled : 03/14/25 Ordered : 03/14/25

Batch#:0467502457639640 Sample Size Received: 31 units Total Amount : 360 units Completed : 03/18/25 Expires: 03/18/26 Sample Method : SOP.T.20.010

Dade	350	ht í	5
Page	5 5 1		,

Ę.	Microbia	I			PAS	SED	င္နီး	Му	coto	xins			PAS	SED
Analyte		LOD	Units	Result	Pass / Fail	Action Level	Analyte			LOD	Unit	s Result	Pass / Fail	Action Level
ASPERGILLU	5 TERREUS			Not Present	PASS		AFLATOXIN I	32		0.0	02 ppm	ND	PASS	0.02
ASPERGILLU	5 NIGER			Not Present	PASS		AFLATOXIN I	31		0.0	02 ppm	ND	PASS	0.02
ASPERGILLU	S FUMIGATUS			Not Present	PASS		OCHRATOXIN	A		0.0	02 ppm	ND	PASS	0.02
ASPERGILLU	S FLAVUS			Not Present	PASS		AFLATOXIN (51		0.0	02 ppm	ND	PASS	0.02
SALMONELL	A SPECIFIC GENE			Not Present	PASS		AFLATOXIN (52		0.0	02 ppm	ND	PASS	0.02
ECOLI SHIGE	LLA			Not Present	PASS		Analyzed by:		Weight:	Extraction da	te:	Ext	racted by:	
TOTAL YEAS	FAND MOLD	10	CFU/g	<10	PASS	100000	3621, 585, 144	0	0.2491g	03/16/25 13:			0,3379,58	
Analyzed by: 4777, 585, 144	Weight: 0 0.8g		ction date: 6/25 09:22:30	6	Extracted 4520	by:	Analysis Metho Analytical Bato			OP.T.40.102.FL				
Analysis Metho	d : SOP.T.40.056C, SOP. h : DA084358MIC				4520		Instrument Use Analyzed Date	ed:N/A		Ba	tch Date	: 03/15/25 1	1:33:46	
Dilution : 10 Reagent : 0127 Consumables : Pipette : N/A	25.18; 021725.02; 0219 7580002051	925.R61;	101624.11				Pipette : DA-09 Mycotoxins test accordance with	ing utilizing	Liquid Chrom	atography with Tr	ple-Quadri	upole Mass Sp	ectrometry	in
Analyzed by: 4777, 585, 144	Weight: 0 0.8g		ction date: 5/25 09:22:30	6	Extracted 4520	by:	Hg	Hea	avy M	1etals			PAS	SED
Analytical Batc Instrument Use DA-382]	d : SOP.T.40.209.FL h : DA084359TYM : d : Incubator (25*C) DA	- 328 [ca	librated with	Batch Da	te : 03/15/2	5 07:53:29	Motol			LOD			Pass / Fail PASS	Action Level
Analyzed Date	: 03/18/25 07:49:48						ARSENIC	APTINAN	LUAD ME	0.0	· · · · · ·		PASS	0.2
Dilution: 10							CADMIUM			0.0	· P.F.		PASS	0.2
Reagent : 0127 Consumables :	25.18; 021725.02; 0226	525.R53					MERCURY			0.0			PASS	0.2
Pipette : N/A	IN/A						LEAD				20 ppm		PASS	0.5
	nold testing is performed u F.S. Rule 64ER20-39.	tilizing MF	PN and traditio	nal culture base	ed techniques	in	Analyzed by: 4056, 1022, 58	5, 1440			tion date 25 11:03		Extract 4056	ed by:
								nd:SOP.T. h:DA084 ed:DA-ICF	396HEA PMS-004	OP.T.40.082.FL	atch Date	:03/15/25	13:09:23	
							Dilution : 50)25.R32; (031025.R42; 03	0525.R29	9; 031025.R	40; 03102	5.R41;

Consumables : 040724CH01; J609879-0193; 179436

Pipette : DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature

03/18/25

Page 6 of 6

Supply Vape Cartridge 500mg - Garlic Cks (H) Garlic Cks (H) Matrix : Derivative

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50314007-012 Harvest/Lot ID: 0467502457639640 Sampled : 03/14/25 Ordered : 03/14/25

Batch#:0467502457639640 Sample Size Received: 31 units Total Amount : 360 units Completed : 03/18/25 Expires: 03/18/26 Sample Method : SOP.T.20.010

	ilth/Foi laterial		n		ΡΑ	SSED
Analyte Filth and Foreign N	laterial	LOD 0.100	Units %	Result ND	P/F PASS	Action Level
Analyzed by: 1879, 585, 1440	Weight: 1q		raction da 16/25 11:		Ex	tracted by: 79
Analytical Batch : DAG nstrument Used : Filt Analyzed Date : 03/16 Dilution : N/A Reagent : N/A Consumables : N/A	h/Foreign Mater	ial Micro	oscope	Batch D	eate:03/1	6/25 10:48:56
Pipette : N/A Filth and foreign materia technologies in accorda				spection utilizii	ng naked ey	ve and microscope
	later A				ΡΑ	SSED
Analyte		LOD	Units	Result	P/F	Action Level
Water Activity Analyzed by:	Weight:	0.010	aw	0.538	PASS	0.85

4797, 585, 1440	0.3262g	03/15/25 14:17:51	4797,585
Analysis Method : SOP.T Analytical Batch : DA08 Instrument Used : DA-00 Analyzed Date : 03/18/2	4366WAT 28 Rotronic Hyg	gropalm Batch Da	te : 03/15/25 09:53:33
Dilution : N/A Reagent : 101724.36 Consumables : PS-14 Pipette : DA-066			
			1

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature

03/18/25