

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Kaycha Labs

Sunnyside Chews 100mg 10pk Watermelon Watermelon Matrix: Edible

Classification: High THC Type: Soft Chew Production Method: Other - Not Listed

Ce	ertif	fica	te d	of /	Ana	alys	is	·		/Lot ID: 635	8426254300593 58426254300593	
СОМ		CE FO	R RETA					Process	ing Facility Source Fac	y : FL - India ility: FL - Indi	antown (4430 antown (4430 diantown (4430 876842220524:	
	Sunnyside [*]	SU DASS	NATYSIDE 114007-002 2014 on the second 2014 of the second All for the						Samı Retail P	Harvest ble Size Rec Total Amo Product Size	Date: 03/07/2! ceived: 14 unit: ount: 3258 unit c: 41.6667 gran Size: 4.1 gran	
	Sativa Waserneton									Orc San Comp	Servings: 10 lered: 03/14/23 npled: 03/14/23 leted: 03/18/23 d: SOP.T.20.010	
22205 Sw N	3, 2025 Martin Hwy , FL, 34956, US	2	de		Sı	JNN	ysi	de [*]	🔺 🔍 -	-	PASSED	
SAFETY R	RESULTS										MISC.	
Pestici PASS	- ides Hea	Hg avy Metals ASSED	Microbials PASSED	Мусо	toxins SED	Residuals Solvents PASSED	Filth PASSED		Activity	Moisture NOT TESTEI	Terpenes NOT TESTED	
Ä	Cannat	oinoid									TESTED	
Total THC 0.250% Total THC/Container : 104.167 mg Total CBD/ Total CBD/Container : 0.000 mg Total Cannabinoids Total Cannabinoids/Container : 107.083 mg												
	D9-THC	THCA	CBD	CBDA	D8-ТНС	CBG	CBGA	CBN	тнсу	CBDV	СВС	
%	0.250 104.17	ND ND	ND ND	ND ND	ND ND	0.003 1.25	ND ND	ND ND	ND ND	ND ND	0.004 1.67	
mg/unit LOD	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	
	%	%	%	%	%	%	%	%	%	%	%	
nalyzed by: 335, 1665, 58	5, 1440			Weight: 2.9794g		Extraction date: 03/17/25 11:42:	52			Extracted by: 3335		
Analytical Batcl Instrument Use	d:SOP.T.40.031, SOP.T.40.031, SOP.T.40.031, SOP.T.40.034420POT cd:DA-LC-007 :03/18/25 07:58:09						Batch Date : 03/17/2	25 07:43:19				
Consumables :	.25.01; 031425.R04 947.110; 04312111 '9: DA-108: DA-078	; 062224CH01; 000										

Pipette : DA-079; DA-108; DA-078

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39.

Label Claim

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

PASSED

Signature 03/18/25

..... Sunnyside Chews 100mg 10pk Watermelon Watermelon Matrix : Edible Type: Soft Chew

PASSED

PASSED

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50314007-002 Harvest/Lot ID: 6358426254300591

Sampled : 03/14/25 Ordered : 03/14/25

Batch#: 6358426254300591 Sample Size Received: 14 units Total Amount : 3258 units Completed : 03/18/25 Expires: 03/18/26 Sample Method : SOP.T.20.010

Page 2 of 5

Pesticides

Pesticide	LOD	Units	Action Level	Pass/Fail	Result	Pesticide		LOD	Units	Action Level	Pass/Fail	Result
TOTAL CONTAMINANT LOAD (PESTICIDES)	0.010	ppm	30	PASS	ND	OXAMYL		0.010	ppm	0.5	PASS	ND
TOTAL DIMETHOMORPH	0.010	ppm	3	PASS	ND	PACLOBUTRAZOL		0.010	maa	0.1	PASS	ND
TOTAL PERMETHRIN	0.010	ppm	1	PASS	ND	PHOSMET		0.010	ppm	0.2	PASS	ND
TOTAL PYRETHRINS	0.010	ppm	1	PASS	ND	PIPERONYL BUTOXIDE		0.010		3	PASS	ND
TOTAL SPINETORAM	0.010	ppm	3	PASS	ND				ppm	0.4	PASS	ND
TOTAL SPINOSAD	0.010	ppm	3	PASS	ND	PRALLETHRIN						
ABAMECTIN B1A	0.010	ppm	0.3	PASS	ND	PROPICONAZOLE		0.010		1	PASS	ND
ACEPHATE	0.010	ppm	3	PASS	ND	PROPOXUR		0.010		0.1	PASS	ND
ACEQUINOCYL	0.010	ppm	2	PASS	ND	PYRIDABEN		0.010	ppm	3	PASS	ND
ACETAMIPRID	0.010	ppm	3	PASS	ND	SPIROMESIFEN		0.010	ppm	3	PASS	ND
ALDICARB	0.010	ppm	0.1	PASS	ND	SPIROTETRAMAT		0.010	ppm	3	PASS	ND
AZOXYSTROBIN	0.010	ppm	3	PASS	ND	SPIROXAMINE		0.010	ppm	0.1	PASS	ND
BIFENAZATE	0.010	ppm	3	PASS	ND	TEBUCONAZOLE		0.010	ppm	1	PASS	ND
BIFENTHRIN	0.010	ppm	0.5	PASS	ND	THIACLOPRID		0.010		0.1	PASS	ND
BOSCALID	0.010	ppm	3	PASS	ND				ppm	1	PASS	ND
CARBARYL	0.010	ppm	0.5	PASS	ND	THIAMETHOXAM					PASS	
CARBOFURAN	0.010	ppm	0.1	PASS	ND	TRIFLOXYSTROBIN			ppm	3		ND
CHLORANTRANILIPROLE	0.010	ppm	3	PASS	ND	PENTACHLORONITROBENZENE	(PCNB) *		ppm	0.2	PASS	ND
CHLORMEQUAT CHLORIDE	0.010	ppm	3	PASS	ND	PARATHION-METHYL *		0.010		0.1	PASS	ND
CHLORPYRIFOS	0.010	ppm	0.1	PASS	ND	CAPTAN *		0.070	ppm	3	PASS	ND
CLOFENTEZINE	0.010	ppm	0.5	PASS	ND	CHLORDANE *		0.010	ppm	0.1	PASS	ND
COUMAPHOS	0.010	ppm	0.1	PASS	ND	CHLORFENAPYR *		0.010	ppm	0.1	PASS	ND
DAMINOZIDE	0.010	ppm	0.1	PASS	ND	CYFLUTHRIN *		0.050	ppm	1	PASS	ND
DIAZINON	0.010	ppm	3	PASS	ND	CYPERMETHRIN *		0.050	ppm	1	PASS	ND
DICHLORVOS	0.010	ppm	0.1	PASS	ND	Analyzed by:	Weight:	Extracti			Extracted b	
DIMETHOATE	0.010	ppm	0.1	PASS	ND	3621, 585, 1440	1.0672g		5 13:44:09		4640,3379	у.
ETHOPROPHOS	0.010	ppm	0.1	PASS	ND	Analysis Method : SOP.T.30.102.					,	
ETOFENPROX	0.010	ppm	0.1	PASS	ND	Analytical Batch : DA084386PES						
ETOXAZOLE	0.010		1.5	PASS	ND	Instrument Used : DA-LCMS-005			Batch	Date :03/15/2	25 11:53:10	
FENHEXAMID	0.010	ppm	3	PASS	ND	Analyzed Date :03/18/25 07:43:	06					
FENOXYCARB	0.010	ppm	0.1	PASS	ND	Dilution: 250						
FENPYROXIMATE	0.010		2	PASS	ND	Reagent : 031125.R23; 031025.F Consumables : 6822423-02	R03; 031425.R17;	031125.R2	4; 012925.RU	1; 031025.RU	1; 081023.01	
FIPRONIL	0.010		0.1	PASS	ND	Pipette : DA-093; DA-094; DA-21	9					
FLONICAMID	0.010		2	PASS	ND	Testing for agricultural agents is pe		iquid Chron	natography Trij	ple-Quadrupole	e Mass Spectron	netry in
FLUDIOXONIL	0.010		3	PASS	ND	accordance with F.S. Rule 64ER20-						
HEXYTHIAZOX	0.010		2	PASS	ND	Analyzed by:	Weight:	Extr	action date:		Extracted	by:
IMAZALIL	0.010		0.1	PASS	ND	4640, 450, 585, 1440	1.0672g		.6/25 13:44:09)	4640,3379	
IMIDACLOPRID	0.010		1	PASS	ND	Analysis Method : SOP.T.30.151/		L.FL				
KRESOXIM-METHYL	0.010	ppm	1	PASS	ND	Analytical Batch : DA084389VOL					11 54 50	
MALATHION	0.010		2	PASS	ND	Instrument Used : DA-GCMS-011 Analyzed Date : 03/18/25 07:40:			Batch Da	te:03/15/25	11:54:59	
METALAXYL	0.010		3	PASS	ND	Dilution : 250	52					
METHIOCARB	0.010		0.1	PASS	ND	Reagent : 031425.R17; 081023.0	01: 031025.R43: 0	31025.R44				
METHOMYL	0.010		0.1	PASS	ND	Consumables : 6822423-02; 040						
MEVINPHOS	0.010		0.1	PASS	ND	Pipette : DA-080; DA-146; DA-21						
MYCLOBUTANIL	0.010	ppm	3	PASS	ND	Testing for agricultural agents is pe		Gas Chromat	tography Triple	e-Quadrupole N	Mass Spectrome	try in
NALED	0.010	ppm	0.5	PASS	ND	accordance with F.S. Rule 64ER20-	39.					

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature

03/18/25

Page 3 of 5

Sunnyside Chews 100mg 10pk Watermelon Watermelon Matrix : Edible Type: Soft Chew

PASSED

PASSED

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50314007-002 Harvest/Lot ID: 6358426254300591 Batch#: 6358426254300591 Sample Size Received: 14 units Sampled : 03/14/25 Ordered : 03/14/25

Total Amount : 3258 units Completed : 03/18/25 Expires: 03/18/26 Sample Method : SOP.T.20.010

Residual Solvents

Solvents	LOD	Units	Action Level	Pass/Fail	Result
1,1-DICHLOROETHENE	0.800	ppm	8	PASS	ND
1,2-DICHLOROETHANE	0.200	ppm	2	PASS	ND
2-PROPANOL	50.000	ppm	500	PASS	ND
ACETONE	75.000	ppm	750	PASS	ND
ACETONITRILE	6.000	ppm	60	PASS	ND
BENZENE	0.100	ppm	1	PASS	ND
BUTANES (N-BUTANE)	500.000	ppm	5000	PASS	ND
CHLOROFORM	0.200	ppm	2	PASS	ND
DICHLOROMETHANE	12.500	ppm	125	PASS	ND
THANOL	500.000	ppm		TESTED	ND
ETHYL ACETATE	40.000	ppm	400	PASS	ND
THYL ETHER	50.000	ppm	500	PASS	ND
THYLENE OXIDE	0.500	ppm	5	PASS	ND
IEPTANE	500.000	ppm	5000	PASS	ND
IETHANOL	25.000	ppm	250	PASS	ND
I-HEXANE	25.000	ppm	250	PASS	ND
PENTANES (N-PENTANE)	75.000	ppm	750	PASS	ND
PROPANE	500.000	ppm	5000	PASS	ND
TOLUENE	15.000	ppm	150	PASS	ND
TOTAL XYLENES	15.000	ppm	150	PASS	ND
TRICHLOROETHYLENE	2.500	ppm	25	PASS	ND
nalyzed by: 50, 585, 1440	Weight: 0.0216g	Extraction date: 03/17/25 14:41:29		E x 85	tracted by:
Analysis Method : SOP.T.40.041.FL Analytical Batch : DA084400SOL nstrument Used : DA-GCMS-002 Analyzed Date : 03/18/25 07:48:41			Batch Date : 03/15/25 1	4:52:18	

Reagent : 030420.09 Consumables : 430596: 319008 Pipette : DA-309 25 uL Syringe 35028

Residual solvents analysis is performed utilizing Gas Chromatography Mass Spectrometry in accordance with with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature

03/18/25

Page 4 of 5

Sunnyside Chews 100mg 10pk Watermelon Watermelon Matrix : Edible Type: Soft Chew

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Julio.Chavez@crescolabs.com Sample : DA50314007-002 Harvest/Lot ID: 6358426254300591 Batch# : 6358426254300591 Sample Size Received : 14 units

Sampled:03/14/25 Total Amount:3258 units Ordered:03/14/25 Completed:03/18/25 Expires: Sample Method:SOP.T.20.010

Sample Size Received : 14 units Total Amount : 3258 units Completed : 03/18/25 Expires: 03/18/26

€£ M	icrobia	I			PAS	SED	Ş	Μ	ycot	oxi	15			PAS	SED
Analyte		LOD	Units	Result	Pass / Fail	Action Level	Analyte				LOD	Units	Result	Pass / Fail	Action Level
ASPERGILLUS TERF	REUS			Not Present	PASS		AFLATOXIN I	32			0.002	ppm	ND	PASS	0.02
ASPERGILLUS NIGE	R			Not Present	PASS		AFLATOXIN I	31			0.002	ppm	ND	PASS	0.02
ASPERGILLUS FUM	IGATUS			Not Present	PASS		OCHRATOXI	A			0.002	ppm	ND	PASS	0.02
ASPERGILLUS FLAV	/US			Not Present	PASS		AFLATOXIN	51			0.002	ppm	ND	PASS	0.02
SALMONELLA SPEC	IFIC GENE			Not Present	PASS		AFLATOXIN	52			0.002	ppm	ND	PASS	0.02
ECOLI SHIGELLA TOTAL YEAST AND	MOLD	10	CFU/g	Not Present <10	PASS PASS	100000	Analyzed by: 3621, 585, 144	0	Weight 1.0672		Extraction dat 03/16/25 13:4			xtracted I 640,3379	y:
analyzed by:	Weight:		action date:	-	Extracted	by:	Analysis Metho			, SOP.T.	40.102.FL				
4777, 585, 1440 Analysis Method : SOF Analytical Batch : DAO			5/25 09:20:4 8.FL, SOP.T.4		4520		Analytical Bate Instrument Use Analyzed Date	d:N/A			Batch	Date:0	3/15/25 11	L:54:57	
Analyzed Date : 03/18 Dilution : 10 Reagent : 012725.18; Consumables : 75800 Pipette : N/A	021725.02; 021	925.R61;	; 101624.11				081023.01 Consumables : Pipette : DA-09 Mycotoxins test accordance witt	3; DA-0	094; DA-219	omatogra	aphy with Triple	Quadrup	ole Mass Spe	ectrometry	in
Analyzed by: 4777, 585, 1440	Weight: 1.006g		action date: 5/25 09:20:4	17	Extracted 4520	by:	Hg	He	eavy	Me	tals			PAS	SED
Analysis Method : SOF Analytical Batch : DAC Instrument Used : Inco DA-3821	84359TYM	- 328 [ca	alibrated wit	h Batch Dat	t e : 03/15/2	5 07:53:2	Metal				LOD	Units	Result	Pass / Fail	Action Level
Analyzed Date : 03/18	/25 07:49:43						TOTAL CONT	AMINA	NT LOAD M	ETALS	0.080	ppm	ND	PASS	5
ilution: 10							ARSENIC				0.020	ppm	ND	PASS	1.5
eagent : 012725.18;	021725.02; 022	625.R53					CADMIUM				0.020	ppm	ND	PASS	0.5
Consumables : N/A							MERCURY				0.020	ppm	ND	PASS PASS	3 0.5
ipette : N/A							LEAD				0.020	ppm	ND	PASS	0.5
otal yeast and mold tes accordance with F.S. Rul		itilizing MI	PN and tradition	onal culture base	d techniques	sin	Analyzed by: 1022, 585, 144	0	Weight 0.2915		Extraction da 03/16/25 12:			Extracted 4056	by:
							Analysis Metho Analytical Bato Instrument Uso Analyzed Date	h:DA0 ed:DA-	84398HEA ICPMS-004			h Date :	03/15/25 1	3:14:16	
							Dilution : 50 Reagent : 0129 120324.07: 03			9; 0310	25.R42; 0305	25.R29;	031025.R4	0; 03102	5.R41;

120324.07; 030625.R25 Consumables : 040724CH01; J609879-0193; 179436

Pipette : DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 03/18/25

..... Sunnyside Chews 100mg 10pk Watermelon Watermelon Matrix : Edible Type: Soft Chew

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50314007-002 Harvest/Lot ID: 6358426254300591 Batch#: 6358426254300591 Sample Size Received: 14 units Sampled : 03/14/25 Ordered : 03/14/25

PASSED

Total Amount : 3258 units Completed : 03/18/25 Expires: 03/18/26 Sample Method : SOP.T.20.010

Page 5 of 5

		Filth/For Materia	-	n		PASSED			
	nalyte ilth and Forei	ign Material	LOD 0.100	Units %	Result ND	P/F PASS	Action Level	Ana	alyt
	nalyzed by: 379, 585, 1440	Weight: 1g		action da L6/25 11:0		Ext 18	ΤΟΤΑΙ		
A In	nalytical Batch strument Used	: SOP.T.40.090 : DA084411FIL : Filth/Foreign Mater 03/16/25 11:15:02	rial Micro	oscope	Batch I	Date : 03/16	6/25 10:48:56	(RS	D) aly:
D	lution : N/A							462	1,

Dilution Reagent : N/A Consumables : N/A

Pipette : N/A

Filth and foreign material inspection is performed by visual inspection utilizing naked eye and microscope technologies in accordance with F.S. Rule 64ER20-39.

Analyte Water Activity		LOD 0.010	Units aw	Result 0.647	P/F PASS	Action Level 0.85
Analyzed by: Weight: Extraction date: Extract 4797, 585, 1440 7.397g 03/15/25 14:07:44 4797,5						
Analysis Method : SOP Analytical Batch : DA0 Instrument Used : DA- Analyzed Date : 03/18,	84366WAT 028 Rotronic H	ygropal	m	Batch Dat	t e : 03/15/2	25 09:53:33
Dilution : N/A Reagent : 101724.36 Consumables : PS-14 Pipette : DA-066						

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.
--

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 03/18/25

PASSED

Homogeneity

PASSED

Amount of tests conducted : 26

Analyte	LOD	Units	Pass/Fail	Result	Action Level
TOTAL THC - HOMOGENEITY (RSD)	0.001	%	PASS	1.298	25
Analyzed by		Ave Wei	rage ght Extracti	on date :	Extracted By :
4621, 3335, 585, 1440		4.11	l2g 03/15/2	5 12:20:3	30 4512,4621
Analysis Method : SOP.T.30.111.FL, S Analytical Batch : DA084356HOM Instrument Used : DA-LC-004 Analyzed Date : 03/17/25 15:42:28	OP.T.40.1		1 Date : 03/15/	25 07:49:	51
Dilution : 40 Reagent : 120324.07; 030825.R06; 0 Consumables : 947.110; 04312111; L 0000355309 Pipette : DA-055; DA-063; DA-067				467; 1009	372593;
10 N. J.	Ulah Deefe				N/ data attain to

Homogeneity testing is performed utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39.