

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664 Kaycha Labs

Supply Shake 14g - Secret Stash (I) Secret Stash (I) Matrix: Flower Classification: High THC Type: Flower-Cured

Cordered: 03/13 Sampled: 03/13 Completed: 03/17 Completed: 03/17 Sampling Method: SOP.T.20. PASSED Pesticides PASSED Heavy Metals Heavy Metals PASSED Microbials Microbials PASSED Microbials Microbials PASSED Microbials Microbials PASSED Microbials M	СОМІ	PLIAN	CE FOR ID: DA50312	RETA		na	lys	is	Cultivati Processi	Harvest ion Facilit ng Facility ource Fac	/Lot ID: 0425 Batch#: 042 ty: FL - India y : FL - India tility: FL - India Sale#: 0911	her - Not Listed 735719116471 25735719116471 antown (4430) iantown (4430) 571706932849
Mar 17, 2025 Sunnyside Pages 1 of 5 Pages 1 of 5 Safetry RESULTS Microbials Image: Container 1 and the container 2 and		100	SUPPLY Base State St							Re Re	nple Size Re Total Amo stail Product etail Serving Ord Sam Compl	ceived: 4 units ount: 744 units Size: 14 gram Size: 14 gram Servings: 1 ered: 03/13/25 pled: 03/13/25 eted: 03/17/25
Image: Section of the sectin of the section of the	22205 Sw M	artin Hwy	2	e		Sı	inn	ysic	le [*]	e Page		PASSED
Pesticides PASSED Heavy Metals PASSED Microbials PASSED Mycotoxins PASSED Residuals Solvents NOT TESTED Filth PASSED Water Activity PASSED Moisture PASSED Terpent Tester Image: Comma binoid Total THC 20.7741% Total THC 20.7741% Total CBD (0.001 Total CBD 0.0555% Total CBD Total CBD/Container : 7.700 mg Total Cannabinoids Total Cannabinoids Central Cannabinoids Image: Comma binoid Image: Comma b	SAFETY RI	ESULTS										MISC.
PASSED PASSED PASSED PASSED Solvents NOT TESTED PASSED PASSED PASSED PASSED PASSED Teste	В С		Hg	Ç	Ş		Ä			\mathbf{S}		Ô
Vertical Difference Calification Constraint Constraint <thconstraint< th=""> Constraint Con</thconstraint<>						ED	Solvents					Terpenes TESTED
20.741.0% b , b , b , b , b , b	Ä	Cannak	oinoid									TESTED
% 0.655 22.904 ND 0.063 0.018 0.048 0.575 ND ND <th< th=""><th>C. C. C</th><th>3 20</th><th>.741%</th><th>0 903.740 mg</th><th></th><th>) 0.</th><th>055%</th><th>) : 7.700 mg</th><th>A REAL</th><th>24</th><th>.292%</th><th>6</th></th<>	C. C	3 20	.741%	0 903.740 mg) 0.	055%) : 7.700 mg	A REAL	24	.292%	6
% 0.655 22.904 ND 0.063 0.018 0.048 0.575 ND ND <th< td=""><td></td><td></td><td></td><td>CPD</td><td>6854</td><td>DR THC</td><td>CRC.</td><td>CRCA</td><td>CRN</td><td>THOM</td><td>CEDV</td><td>CPC</td></th<>				CPD	6854	DR THC	CRC.	CRCA	CRN	THOM	CEDV	CPC
Lon 0.001 0		0.655	22.904	ND	0.063	0.018	0.048	0.575	ND	ND	ND	0.029
% %	-			ND								
3335, 1665, 585, 1440 0.2131g 03/14/25 11:31:11 Analysis Method: SOP.T.40.031, SOP.T.30.031 Analytical Batch : DA084327POT Instrument Used: DA-LC-001 Batch Date: 03/14/25 08:52:44 Analyzed Date: 03/17/25 08:38:36 Dilution: 400 Reagent: 030825.R07; 012725.03; 030825.R04 Consumables: 947.110; 04312111; 062224CH01; 0000355309 Pipette: DA-079; DA-108; DA-078		%	%	%	%	%	%	%	%	%	%	%
Analyzical Batch: DA084327POT Instrument Used: DA-L:C-001 Batch Date: 03/14/25 08:52:44 Analyzed Date: 03/17/25 08:38:36 Bitch Date: 03/14/25 08:52:44 Dilution: 400 Consumables: 947.10; 04312111; 062224CH01; 0000355309 Pipette: DA-079; DA-108; DA-078 Education of the second of the sec	Analyzed by: 3335, 1665, 585,	1440						1				
Reagent: 030825.R07; 012725.03; 030825.R04 Consumables: 947.110; 04312111; 062224CH01; 0000355309 Pipette: DA-079; DA-108; DA-078	Analytical Batch Instrument Used Analyzed Date : (: DA084327POT : DA-LC-001					1	Batch Date : 03/14/25	08:52:44			
Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39.	Reagent : 03082 Consumables : 94 Pipette : DA-079	47.110; 04312111 ; DA-108; DA-078	; 062224CH01; 00003									
Label Claim PASS			izing High Performance Li	quid Chromatography	with UV detection in a	cordance with F.S.	Rule 64ER20-39.					PASSED

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 03/17/25

..... Supply Shake 14g - Secret Stash (I) Secret Stash (I) Matrix : Flower Type: Flower-Cured

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

PASSED

TESTED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50313016-005 Harvest/Lot ID: 0425735719116471 Batch#:0425735719116471 Sample Size Received:4 units Sampled : 03/13/25 Ordered : 03/13/25

Total Amount : 744 units Completed : 03/17/25 Expires: 03/17/26 Sample Method : SOP.T.20.010

Page 2 of 5

|--|

Terpenes

Terpenes	LOD (%	Pass/Fail	mg/unit	Result (%)	Terpenes		LOD (%)	Pass/Fail	mg/unit	Result (%)	
TOTAL TERPENES	0.007	TESTED	210.28	1.502	ALPHA-CEDRENE		0.005	TESTED	ND	ND	
BETA-CARYOPHYLLENE	0.007	TESTED	57.40	0.410	ALPHA-PHELLAN	DRENE	0.007	TESTED	ND	ND	
LIMONENE	0.007	TESTED	40.18	0.287	ALPHA-PINENE		0.007	TESTED	ND	ND	
LINALOOL	0.007	TESTED	31.08	0.222	ALPHA-TERPINEM		0.007	TESTED	ND	ND	
BETA-MYRCENE	0.007	TESTED	25.06	0.179	ALPHA-TERPINOL	ENE	0.007	TESTED	ND	ND	
ALPHA-HUMULENE	0.007	TESTED	20.02	0.143	CIS-NEROLIDOL		0.003	TESTED	ND	ND	
ALPHA-BISABOLOL	0.007	TESTED	13.44	0.096	GAMMA-TERPINE	NE	0.007	TESTED	ND	ND	
FENCHYL ALCOHOL	0.007	TESTED	8.54	0.061	TRANS-NEROLID	DL	0.005	TESTED	ND	ND	
ALPHA-TERPINEOL	0.007	TESTED	8.54	0.061	Analyzed by:	W	/eight:		Extraction date:		Extracted by:
BETA-PINENE	0.007	TESTED	6.02	0.043	4451, 585, 1440	1.	.1961g		03/14/25 11:10	:33	4451
3-CARENE	0.007	TESTED	ND	ND	Analysis Method : S	OP.T.30.061A.FL, SOP.T.40.061A.FL					
BORNEOL	0.013	TESTED	ND	ND	Analytical Batch : D					Batch Date : 03/14/25 09:44:43	
CAMPHENE	0.007	TESTED	ND	ND	Analyzed Date : 03					Batch Date 103/14/23 05.44.43	
CAMPHOR	0.007	TESTED	ND	ND	Dilution : 10						
ARYOPHYLLENE OXIDE	0.007	TESTED	ND	ND	Reagent : 120224.0						
CEDROL	0.007	TESTED	ND	ND		110; 04312111; 2240626; 00003553	09				
UCALYPTOL	0.007	TESTED	ND	ND	Pipette : DA-065						
ARNESENE	0.007	TESTED	ND	ND	Terpenoid testing is p	erformed utilizing Gas Chromatography Ma	iss Spectrometry.	For all Flower sa	imples, the Total	Terpenes % is dry-weight corrected.	
ENCHONE	0.007	TESTED	ND	ND							
SERANIOL	0.007	TESTED	ND	ND							
SERANYL ACETATE	0.007	TESTED	ND	ND							
SUAIOL	0.007	TESTED	ND	ND							
IEXAHYDROTHYMOL	0.007	TESTED	ND	ND							
ISOBORNEOL	0.007	TESTED	ND	ND							
ISOPULEGOL	0.007	TESTED	ND	ND							
VEROL	0.007	TESTED	ND	ND							
OCIMENE	0.007	TESTED	ND	ND							
PULEGONE	0.007	TESTED	ND	ND							
SABINENE	0.007	TESTED	ND	ND							
SABINENE HYDRATE	0.007	TESTED	ND	ND							
VALENCENE	0.007	TESTED	ND	ND							

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 03/17/25

Supply Shake 14g - Secret Stash (I) Secret Stash (I) Matrix : Flower Type: Flower-Cured

PASSED

PASSED

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com

Sample : DA50313016-005 Harvest/Lot ID: 0425735719116471 Batch#:0425735719116471 Sample Size Received:4 units

Total Amount : 744 units Sampled : 03/13/25 Ordered : 03/13/25 Completed : 03/17/25 Expires: 03/17/26 Sample Method : SOP.T.20.010

Page 3 of 5

Pesticides

esticide	LOD	Units	Action Level	Pass/Fail	Result	Pesticide		LOD	Units	Action Level	Pass/Fail	Resu
TAL CONTAMINANT LOAD (PESTICIDES)	0.010	ppm	5	PASS	ND	OXAMYL		0.010	ppm	0.5	PASS	ND
TAL DIMETHOMORPH	0.010	ppm	0.2	PASS	ND	PACLOBUTRAZOL		0.010	ppm	0.1	PASS	ND
TAL PERMETHRIN	0.010	ppm	0.1	PASS	ND	PHOSMET		0.010	maa	0.1	PASS	ND
TAL PYRETHRINS	0.010	ppm	0.5	PASS	ND	PIPERONYL BUTOXIDE		0.010		3	PASS	ND
TAL SPINETORAM	0.010	ppm	0.2	PASS	ND			0.010		0.1	PASS	ND
TAL SPINOSAD	0.010	ppm	0.1	PASS	ND	PRALLETHRIN						
AMECTIN B1A	0.010	ppm	0.1	PASS	ND	PROPICONAZOLE		0.010		0.1	PASS	ND
EPHATE	0.010	ppm	0.1	PASS	ND	PROPOXUR		0.010	ppm	0.1	PASS	ND
EQUINOCYL	0.010	ppm	0.1	PASS	ND	PYRIDABEN		0.010	ppm	0.2	PASS	ND
ETAMIPRID	0.010	ppm	0.1	PASS	ND	SPIROMESIFEN		0.010	ppm	0.1	PASS	ND
DICARB	0.010	ppm	0.1	PASS	ND	SPIROTETRAMAT		0.010	ppm	0.1	PASS	ND
DXYSTROBIN	0.010	ppm	0.1	PASS	ND	SPIROXAMINE		0.010	ppm	0.1	PASS	ND
ENAZATE	0.010	ppm	0.1	PASS	ND	TEBUCONAZOLE		0.010		0.1	PASS	ND
ENTHRIN	0.010	ppm	0.1	PASS	ND	THIACLOPRID		0.010		0.1	PASS	ND
SCALID	0.010	ppm	0.1	PASS	ND	THIAMETHOXAM		0.010		0.5	PASS	ND
RBARYL	0.010	ppm	0.5	PASS	ND			0.010		0.1	PASS	ND
RBOFURAN	0.010	ppm	0.1	PASS	ND	TRIFLOXYSTROBIN						
LORANTRANILIPROLE	0.010	ppm	1	PASS	ND	PENTACHLORONITROBEN	ZENE (PCNB) *	0.010		0.15	PASS	ND
LORMEQUAT CHLORIDE	0.010	ppm	1	PASS	ND	PARATHION-METHYL *		0.010		0.1	PASS	ND
LORPYRIFOS	0.010	ppm	0.1	PASS	ND	CAPTAN *		0.070	ppm	0.7	PASS	ND
DFENTEZINE	0.010	ppm	0.2	PASS	ND	CHLORDANE *		0.010	ppm	0.1	PASS	ND
UMAPHOS	0.010	ppm	0.1	PASS	ND	CHLORFENAPYR *		0.010	ppm	0.1	PASS	ND
MINOZIDE	0.010	ppm	0.1	PASS	ND	CYFLUTHRIN *		0.050	ppm	0.5	PASS	ND
ZINON	0.010	ppm	0.1	PASS	ND	CYPERMETHRIN *		0.050	npm	0.5	PASS	ND
HLORVOS	0.010	ppm	0.1	PASS	ND	Analyzed by:	Weight:	Extracti			Extracted	
IETHOATE	0.010	ppm	0.1	PASS	ND	3621, 585, 1440	1.1183g		5 12:20:21		450.3379	by:
IOPROPHOS	0.010	ppm	0.1	PASS	ND	Analysis Method : SOP.T.3			LEILUILI		100,0070	
DFENPROX	0.010	ppm	0.1	PASS	ND	Analytical Batch : DA0843						
DXAZOLE	0.010	ppm	0.1	PASS	ND	Instrument Used : DA-LCM			Batc	Date :03/14	25 09:58:53	
NHEXAMID	0.010	ppm	0.1	PASS	ND	Analyzed Date :03/17/25	L0:31:12					
NOXYCARB	0.010	ppm	0.1	PASS	ND	Dilution : 250						
NPYROXIMATE	0.010	ppm	0.1	PASS	ND	Reagent: 031125.R21; 03 Consumables: 6822423-0		1; 012925.R0	1; 031025.F	01; 081023.0	L	
PRONIL	0.010	ppm	0.1	PASS	ND	Pipette : DA-093; DA-094;						
ONICAMID	0.010	ppm	0.1	PASS	ND	Testing for agricultural agen		a Liquid Chron	atography T	rinle-Ouadrund	la Mass Sportro	metry in
UDIOXONIL	0.010	ppm	0.1	PASS	ND	accordance with F.S. Rule 64		g Elquid cirion	lacography i	inpic-Quudiupe	ile inuss speed of	nea y in
XYTHIAZOX	0.010	ppm	0.1	PASS	ND	Analyzed by:	Weight:	Extractio	n date:		Extracted b	by:
AZALIL	0.010	ppm	0.1	PASS	ND	450, 585, 1440	1.1183g	03/14/25	12:20:21		450,3379	
DACLOPRID	0.010	ppm	0.4	PASS	ND	Analysis Method : SOP.T.3		L51.FL				
ESOXIM-METHYL	0.010	ppm	0.1	PASS	ND	Analytical Batch : DA0843						
LATHION	0.010		0.2	PASS	ND	Instrument Used : DA-GCM Analyzed Date : 03/17/25			Batch D	ate:03/14/25	10:01:58	
TALAXYL	0.010	ppm	0.1	PASS	ND	Dilution : 250	10.30.23					
THIOCARB	0.010	ppm	0.1	PASS	ND	Reagent: 031225.R11; 08	1023 01· 031025 B43	· 031025 B44				
THOMYL	0.010	ppm	0.1	PASS	ND	Consumables : 6822423-0						
VINPHOS	0.010	ppm	0.1	PASS	ND	Pipette : DA-080; DA-146;						
CLOBUTANIL	0.010	ppm	0.1	PASS	ND	Testing for agricultural agen	ts is performed utilizin	g Gas Chromat	ography Trip	le-Quadrupole	Mass Spectrome	etry in
LED	0.010	nnm	0.25	PASS	ND	accordance with F.S. Rule 64		-				-

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature

03/17/25

..... Supply Shake 14g - Secret Stash (I) Secret Stash (I) Matrix : Flower Type: Flower-Cured

PASSED

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50313016-005 Harvest/Lot ID: 0425735719116471 Batch#:0425735719116471 Sample Size Received:4 units Sampled : 03/13/25 Ordered : 03/13/25

Total Amount : 744 units Completed : 03/17/25 Expires: 03/17/26 Sample Method : SOP.T.20.010

Page 4 of 5

Ç	Micro	bial			PAS	SED	ڳ	My	cotox	ins			PAS	SED
Analyte		LOD	O Units	Result	Pass / Fail	Action Level	Analyte			LOD	Units	Result	Pass / Fail	Action Level
ASPERGILLUS	5 TERREUS			Not Present	PASS	Level	AFLATOXIN	B2		0.002	ppm	ND	PASS	0.02
ASPERGILLUS				Not Present	PASS		AFLATOXIN			0.002		ND	PASS	0.02
	5 FUMIGATUS			Not Present	PASS		OCHRATOXI			0.002		ND	PASS	0.02
ASPERGILLUS	5 FLAVUS			Not Present	PASS		AFLATOXIN	G1		0.002		ND	PASS	0.02
SALMONELLA	SPECIFIC GEN	E		Not Present	PASS		AFLATOXIN	G2		0.002	ppm	ND	PASS	0.02
ECOLI SHIGE	LLA			Not Present	PASS		Analyzed by:		Weight:	Extraction dat	e.	F	xtracted	by:
TOTAL YEAST	AND MOLD	10	CFU/g	830	PASS	100000	3621, 585, 14	40	1.1183g	03/14/25 12:2			50,3379	Jy.
Analyzed by: 1520, 585, 144	Weig 0 1.12		raction date: 14/25 09:15:0		Extracted b 4520.4571	y:	Analysis Meth Analytical Bat		.30.102.FL, SO	P.T.40.102.FL				
Analysis Metho	d:SOP.T.40.056 h:DA084310MIC	C, SOP.T.40.0			1920,1072		Instrument Us Analyzed Date	ed:N/A		Batch	Date : 0	3/14/25 10):01:55	
Consumables : Pipette : N/A	25.01; 021725.0 7580002046						accordance wi	th F.S. Rule		ography with Triple	-Quadrupo			in SED
Analyzed by: 1520, 4777, 58	5, 1440	Weight: 1.123g	Extraction da 03/14/25 09:		Extracted 4520,457		[Hg]	пе		etais				JLD
Analytical Batc	d : SOP.T.40.209 h : DA084312TYN d : Incubator (25	4	calibrated wit	h Batch Dat	te:03/14/2	5 07:26:14	Metal			LOD	Units		Pass / Fail	Action Level
DA-382]								TAMINAN	T LOAD META			ND	PASS	1.1
nalyzed Date	: 03/17/25 08:31	:09					ARSENIC			0.020		ND	PASS	0.2
Dilution: 10							CADMIUM			0.020	I. I.	ND	PASS PASS	0.2 0.2
Reagent : 0124 Consumables :	25.01; 021725.0	5; 022625.R5	5				MERCURY LEAD			0.020		ND ND	PASS	0.2
Pipette : N/A							Analyzed by:		Weigl			ND	Extracte	0.0
	nold testing is perfo F.S. Rule 64ER20-3		MPN and traditi	onal culture base	d techniques	s in	1022, 4056, 5	85, 1440	0.242			2	4056	u by.
accordance with	1.3. Nule 04EN20-3						Analysis Meth Analytical Bat Instrument Us Analyzed Date	ch : DA084 ed : DA-IC	PMS-004		h Date : ()3/14/25 0	9:05:33	
							120324.07; 0	30625.R25		31025.R42; 0305 0193; 179436	25.R29; ()31025.R4	0; 03102	5.R41;

Pipette : DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature

03/17/25

Page 5 of 5

Supply Shake 14g - Secret Stash (I) Secret Stash (I) Matrix : Flower Type: Flower-Cured

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50313016-005 Harvest/Lot ID: 0425735719116471 Batch#:0425735719116471 Sample Size Received:4 units Sampled : 03/13/25 Ordered : 03/13/25

Total Amount : 744 units Completed : 03/17/25 Expires: 03/17/26 Sample Method : SOP.T.20.010

|--|--|

Filth/Foreign Material

P	Δ	ς	ς	F	D
			$\mathbf{-}$		

Analyte Filth and Foreign M	laterial	LOD 0.100	Units %	Result ND	P/F PASS	Action Level	Analyte Moisture Content		LOD 1.0	Units %	Result 12.1	P/F PASS	Action Level 15
Analyzed by: 1879, 585, 1440	Weight: 1g		raction date 14/25 09:53		Ext 18	racted by: 79	Analyzed by: 4797, 585, 1440	Weight: 0.497g	-	xtraction d 3/14/25 10			tracted by: 797
Analysis Method : SOF Analytical Batch : DAC Instrument Used : Filt Analyzed Date : 03/14	84336FIL h/Foreign Mater	ial Micro	oscope	Batch D)ate : 03/14	4/25 09:43:58	Analysis Method : SOP.T.4 Analytical Batch : DA0843 Instrument Used : DA-003 Analyzed Date : 03/15/25	319MOI 3 Moisture A	Analyze	r	Batch Dat	e: 03/14/2	25 07:36:16
Dilution : N/A Reagent : N/A Consumables : N/A Pipette : N/A							Dilution : N/A Reagent : 092520.50; 120 Consumables : N/A Pipette : DA-066	0324.07					
Filth and foreign materia technologies in accordar				pection utilizi	ng naked ey	e and microscope	Moisture Content analysis ut	ilizing loss-or	n-drying	technology	in accordance	with F.S. Ru	le 64ER20-39.
(<u>(</u>) w	/ater A	ctiv	ity		PA	SSED							

Analyte LOD Units Result P/F Action Level Water Activity 0.538 PASS 0.010 aw 0.65 Extracted by: 4797 Extraction date: 03/14/25 09:34:00 Analyzed by: 4797, 585, 1440 Weight: 1.796g Analysis Method : SOP.T.40.019

Analytical Batch : DA084321WAT Instrument Used : DA-028 Rotronic Hygropalm Analyzed Date : 03/15/25 14:31:42	Batch Date : 03/14/25 07:38:59
Dilution : N/A Reagent : 101724.36 Consumables : PS-14 Pipette : N/A	

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 03/17/25