

DAVIE, FL, 33314, US (954) 368-7664

Kaycha Labs

FloraCal Live Rosin Fresh Press 1g - Alpine Guav (H) Alpine Guav (H)

Matrix: Derivative Classification: High THC Type: Live Rosin Production Method: Other - Not Listed Harvest/Lot ID: 8411870948254064 Batch#: 8411870948254064

Certificate of Analysis Cultivation Facility: FL - Indiantown (4430) **COMPLIANCE FOR RETAIL** Processing Facility : FL - Indiantown (4430) Source Facility: FL - Indiantown (4430) Laboratory Sample ID: DA50108015-007 Seed to Sale#: 5483633273869768 Harvest Date: 01/03/25 Sample Size Received: 16 units Total Amount: 382 units SUNNYSIDE DA50108015-007 Retail Product Size: 1 gram Retail Serving Size: 1 gram Sampling Method: SOP.T.20.010 Jan 13, 2025 | Sunnyside Sunnyside 22205 Sw Martin Hwv indiantown, FL, 34956, US Pages 1 of 6 SAFETY RESULTS R€ Hg 0 Filth Pesticides Heavy Metals Microbials **Mycotoxins** Residuals Water Activity Moisture **NOT TESTED** PASSED PASSED PASSED PASSED Solvents PASSED PASSED PASSED

PASSED

Servings: 1 Ordered: 01/08/25 Sampled: 01/08/25 Completed: 01/13/25

PASSED

MISC.

Ο

Terpenes

PASSED

	_									
D9-THC	THCA	CBD	CBDA	D8-THC	CBG	CBGA	CBN	THCV	CBDV	CBC
0.281	92.005	ND	0.230	0.059	0.609	ND	ND	ND	<0.010	0.079
2.81	920.05	ND	2.30	0.59	6.09	ND	ND	ND	<0.10	0.79
0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
%	%	%	%	%	%	%	%	%	%	%
5, 585, 1440									Extracted by: 3335	
: DA081992POT : DA-LC-003						Batch Date: 01/09	/25 09:36:36			
	0.281 2.81 0.001 % 5,585,1440 : SOP.T.40.031, S : DA081992POT : DA4-LC-003	0.281 92.005 2.81 920.05 0.001 0.001 % %	0.281 92.005 ND 2.81 920.05 ND 0.001 0.001 0.001 % % % 5,585, 1440 :: SOP.T.40.031, SOP.T.30.031 : DA081992POT : DA-U-C003	0.281 92.005 ND 0.230 2.81 920.05 ND 2.30 0.001 0.001 0.001 0.001 % % % % % 5,585,1440 % 1: SOP.T.40.031, SOP.T.30.031 : DA081992POT : DA-U-C003	0.281 92.005 ND 0.230 0.059 2.81 920.05 ND 2.30 0.59 0.001 0.001 0.001 0.001 % % % % 5, 585, 1440 % % :: SOPT.40.031, SOP.T.30.031 : DA081992POT : SDA: SUP COOS	0.281 92.005 ND 0.230 0.059 6.09 2.81 920.05 ND 2.30 0.59 6.09 0.001 0.001 0.001 0.001 0.001 0.001 % % % % % % % s, 585, 1440 0.118g 01/09/25	0.281 92.005 ND 0.230 0.059 0.609 ND 2.81 920.05 ND 2.30 0.59 6.09 ND 0.001 0.001 0.001 0.001 0.001 0.001 0.001 % % % % % % % 5,585,1440 Weight: 0.118g Extraction date: 01/09/25 12:18:12 Extraction date: 01/09/25 12:18:12 Extraction date: 01/09/25 12:18:12	0.281 92.005 ND 0.230 0.059 0.609 ND ND 2.81 920.05 ND 2.30 0.59 6.09 ND ND 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 % % % % % % % %	0.281 92.005 ND 0.230 0.059 0.609 ND ND <td>0.281 92.005 ND 0.230 0.059 0.609 ND ND ND <0.010 <0.010 <0.010 <0.010 <0.001 <0</td>	0.281 92.005 ND 0.230 0.059 0.609 ND ND ND <0.010 <0.010 <0.010 <0.010 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0

Dilution: 400 Reagent : 010325.R02; 121724.01; 121624.R03 Consumables : 947.110; 04312111; 040724CH01; 0000355309

Pipette : DA-077; DA-108; DA-078

Full Spe rum cannabinoid analysis utilizing High Performance Liguid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA Testing 97164

Signature 01/13/25

Type: Live Rosin

FloraCal Live Rosin Fresh Press 1g - Alpine Guav (H) Alpine Guav (H) Matrix : Derivative

PASSED

PASSED

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50108015-007 Harvest/Lot ID: 8411870948254064 Batch#: 8411870948254064 Sample Size Received: 16 units Sampled : 01/08/25 Ordered : 01/08/25

Total Amount : 382 units Completed : 01/13/25 Expires: 01/13/26 Sample Method : SOP.T.20.010

Page 2 of 6

Terpenes

lerpenes .	LOD (%)	mg/unit	t %	Result (%)		Terpenes	LOD (%)	mg/unit	%	Result (%)
OTAL TERPENES	0.007	54.16	5.416			VALENCENE	0.00	ND	ND	
ETA-MYRCENE	0.007	13.54	1.354			ALPHA-CEDRENE	0.00	ND	ND	
ETA-CARYOPHYLLENE	0.007	11.94	1.194			ALPHA-PHELLANDRENE	0.00	ND	ND	
MONENE	0.007	11.57	1.157			ALPHA-TERPINENE	0.00	ND	ND	
NALOOL	0.007	4.86	0.486			ALPHA-TERPINOLENE	0.00	ND	ND	
PHA-HUMULENE	0.007	3.76	0.376			CIS-NEROLIDOL	0.003	ND	ND	
UAIOL	0.007	2.25	0.225			GAMMA-TERPINENE	0.00	ND	ND	
PHA-BISABOLOL	0.007	1.74	0.174			TRANS-NEROLIDOL	0.00	ND	ND	
ETA-PINENE	0.007	1.66	0.166		1	Analyzed by:	Weight:	Extraction d	ate:	Extracted by:
LPHA-PINENE	0.007	0.95	0.095		1	4451, 585, 1440	0.2333g	01/09/25 12	:49:12	4451
PHA-TERPINEOL	0.007	0.73	0.073			Analysis Method : SOP.T.30.061A.FL, SC	P.T.40.061A.FL			
NCHYL ALCOHOL	0.007	0.67	0.067			Analytical Batch : DA082002TER				
MPHENE	0.007	0.26	0.026			Instrument Used : DA-GCMS-009 Analyzed Date : 01/13/25 08:39:06			Batch D	Date: 01/09/25 09:58:31
RYOPHYLLENE OXIDE	0.007	0.23	0.023		1	Dilution : 10				
CARENE	0.007	ND	ND			Reagent : 032524.10				
DRNEOL	0.013	ND	ND			Consumables : 947.110; 04402004; 224	0626; 280670723			
MPHOR	0.007	ND	ND			Pipette : DA-065				
DROL	0.007	ND	ND			Terpenoid testing is performed utilizing Gas (Chromatography Mass Sp	ctrometry. For all	Flower samp	ples, the Total Terpenes % is dry-weight corrected.
CALYPTOL	0.007	ND	ND							
RNESENE	0.007	ND	ND							
	0.007	ND	ND							
ENCHONE	0.007									
	0.007	ND	ND							
ERANIOL										
ERANIOL ERANYL ACETATE	0.007	ND	ND							
ERANIOL ERANYL ACETATE EXAHYDROTHYMOL	0.007	ND ND	ND ND							
ERANIOL ERANYL ACETATE EXAHYDROTHYMOL OBORNEOL	0.007 0.007 0.007	ND ND ND	ND ND ND							
RANIOL RANYL ACETATE XAHYDROTHYMOL DBORNEOL DPULEGOL	0.007 0.007 0.007 0.007	ND ND ND ND	ND ND ND ND							
RANIOL RANYL ACETATE EXAHYDROTHYMOL OBORNEOL OPULEGOL EROL	0.007 0.007 0.007 0.007 0.007	ND ND ND ND	ND ND ND ND							
ERANIOL ERANYL ACETATE EXANYDROTHYMOL OBORNEOL OPULEGOL EROL CIMENE	0.007 0.007 0.007 0.007 0.007 0.007	ND ND ND ND ND	ND ND ND ND ND							
ERANIOL ERANYL ACETATE EXAHYDROTHYMOL GOBORNEOL GOPULEGOL EROL CIMENE ULEGONE	0.007 0.007 0.007 0.007 0.007 0.007 0.007	ND ND ND ND ND ND	ND ND ND ND ND ND							
ENCHONE ERANVL ACETATE HEXAHYDROTHYMOL SOBORNEOL SOPULEGOL LEROL CUMENE PULEGONE HABINENE ABINENE HYDRATE	0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND							

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 01/13/25

Type: Live Rosin

..... FloraCal Live Rosin Fresh Press 1g - Alpine Guav (H) Alpine Guav (H) Matrix : Derivative

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com

Sample : DA50108015-007 Harvest/Lot ID: 8411870948254064

Sampled : 01/08/25 Ordered : 01/08/25

Batch#: 8411870948254064 Sample Size Received: 16 units Total Amount : 382 units Completed : 01/13/25 Expires: 01/13/26 Sample Method : SOP.T.20.010

Page 3 of 6

ष्ट्
0

Pesticides

Pesticide	LOD	Units	Action	Pass/Fail	Result	Pesticide	LOD	Units	Action	Pass/Fail	Result
			Level						Level		
TOTAL CONTAMINANT LOAD (PESTICIDES)	0.010	1.1.	5	PASS	ND	OXAMYL	0.010	ppm	0.5	PASS	ND
TOTAL DIMETHOMORPH	0.010		0.2	PASS	ND	PACLOBUTRAZOL	0.010	ppm	0.1	PASS	ND
TOTAL PERMETHRIN	0.010		0.1	PASS	ND	PHOSMET	0.010	ppm	0.1	PASS	ND
TOTAL PYRETHRINS	0.010		0.5	PASS	ND	PIPERONYL BUTOXIDE	0.010	ppm	3	PASS	ND
TOTAL SPINETORAM	0.010		0.2	PASS PASS	ND	PRALLETHRIN	0.010	ppm	0.1	PASS	ND
TOTAL SPINOSAD	0.010		0.1		ND	PROPICONAZOLE	0.010	ppm	0.1	PASS	ND
ABAMECTIN B1A	0.010		0.1	PASS	ND ND	PROPOXUR		ppm	0.1	PASS	ND
ACEPHATE	0.010		0.1	PASS PASS		PYRIDABEN		ppm	0.2	PASS	ND
ACEQUINOCYL	0.010		0.1	PASS	ND ND				0.1	PASS	ND
ACETAMIPRID	0.010		0.1		ND	SPIROMESIFEN		ppm			
ALDICARB	0.010			PASS PASS	ND	SPIROTETRAMAT		ppm	0.1	PASS	ND
AZOXYSTROBIN	0.010	1.1.	0.1	PASS		SPIROXAMINE	0.010	ppm	0.1	PASS	ND
BIFENAZATE	0.010		0.1		ND	TEBUCONAZOLE	0.010	ppm	0.1	PASS	ND
BIFENTHRIN	0.010		0.1	PASS PASS	ND	THIACLOPRID	0.010	ppm	0.1	PASS	ND
BOSCALID	0.010		0.1	PASS	ND	THIAMETHOXAM	0.010	ppm	0.5	PASS	ND
CARBARYL	0.010		0.5		ND ND	TRIFLOXYSTROBIN	0.010	ppm	0.1	PASS	ND
CARBOFURAN	0.010		0.1	PASS PASS	ND	PENTACHLORONITROBENZENE (PCNB) *	0.010	ppm	0.15	PASS	ND
CHLORANTRANILIPROLE	0.010		1			PARATHION-METHYL *		ppm	0.1	PASS	ND
CHLORMEQUAT CHLORIDE	0.010	1.1.	1	PASS	ND ND	CAPTAN *		ppm	0.7	PASS	ND
CHLORPYRIFOS	0.010		0.1	PASS							
CLOFENTEZINE	0.010		0.2	PASS	ND	CHLORDANE *		ppm	0.1	PASS	ND
COUMAPHOS	0.010		0.1	PASS	ND	CHLORFENAPYR *		ppm	0.1	PASS	ND
DAMINOZIDE	0.010		0.1	PASS PASS	ND	CYFLUTHRIN *	0.050	ppm	0.5	PASS	ND
DIAZINON	0.010		0.1	PASS	ND	CYPERMETHRIN *	0.050	ppm	0.5	PASS	ND
DICHLORVOS	0.010		0.1	PASS	ND	Analyzed by: Wei	aht: Ex	traction date	:	Extracted	by:
DIMETHOATE	0.010		0.1	PASS	ND	3621, 3379, 585, 1440 0.26	25g 01	/09/25 12:59:3	37	3621,450	
ETHOPROPHOS	0.010		0.1	PASS	ND	Analysis Method : SOP.T.30.101.FL (Gainesvill	e), SOP.T.30.10	02.FL (Davie),	SOP.T.40.101	.FL (Gainesville)	,
ETOFENPROX	0.010		0.1		ND	SOP.T.40.102.FL (Davie)					
ETOXAZOLE	0.010		0.1	PASS	ND	Analytical Batch : DA082001PES Instrument Used : DA-LCMS-004 (PES)		Patch	Date : 01/09/2	E 00-E0-02	
FENHEXAMID	0.010		0.1		ND	Analyzed Date : 01/10/25 11:41:29		Datti	Date:01/09/2	20 09.00.00	
FENOXYCARB	0.010		0.1	PASS	ND ND	Dilution : 250					
FENPYROXIMATE	0.010					Reagent : 010825.R33; 010825.R29; 010825.I	R01; 010225.R4	45; 102124.RO	8; 010825.R0	2; 081023.01	
FIPRONIL	0.010		0.1	PASS PASS	ND	Consumables : 221021DD					
FLONICAMID	0.010		0.1	PASS	ND	Pipette : DA-093; DA-094; DA-219					
FLUDIOXONIL	0.010		0.1		ND	Testing for agricultural agents is performed utiliz	ing Liquid Chror	matography Tri	ple-Quadrupol	e Mass Spectron	netry in
HEXYTHIAZOX	0.010		0.1	PASS PASS	ND	accordance with F.S. Rule 64ER20-39.					
	0.010		0.1		ND	Analyzed by: Weigl 450, 3379, 585, 1440 0.262		raction date: 09/25 12:59:3		Extracted 3621.450	by:
IMIDACLOPRID	0.010		0.4 0.1	PASS PASS	ND ND	Analysis Method :SOP.T.30.151.FL (Gainesvill					
KRESOXIM-METHYL	0.010		0.1	PASS	ND	Analytical Batch : DA082006VOL	c), 50r.1.50.15	THUE (Davie)	, 501.1.40.15	1.1 L	
MALATHION	0.010		0.2	PASS	ND	Instrument Used : DA-GCMS-010		Batch Date	:01/09/25 09:	59:49	
METALAXYL	0.010		0.1	PASS	ND	Analyzed Date :01/10/25 11:27:12					
METHIOCARB	0.010			PASS		Dilution : 250					
METHOMYL	0.010	1.1.	0.1	PASS	ND	Reagent: 010825.R01; 081023.01; 010725.R					
MEVINPHOS	0.010		0.1		ND	Consumables : 221021DD; 2240626; 0407240 Pipette : DA-080; DA-146; DA-218	LHUI; 1/4/360	1			
MYCLOBUTANIL	0.010		0.1	PASS PASS	ND ND		ing Cos Chrome	tography Trial	Quadrupel-	Mass Coostra	ter die
NALED	0.010	рш	0.25	PASS	ND	Testing for agricultural agents is performed utiliz accordance with F.S. Rule 64ER20-39.	ing das ciroma	icographiy iffpi	e-quaurupole i	mass specifolme	u y III

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 01/13/25

PASSED

PASSED

Type: Live Rosin

Page 4 of 6

. FloraCal Live Rosin Fresh Press 1g - Alpine Guav (H) Alpine Guav (H) Matrix : Derivative

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50108015-007 Harvest/Lot ID: 8411870948254064 Batch#: 8411870948254064 Sample Size Received: 16 units Sampled : 01/08/25 Ordered : 01/08/25

Total Amount : 382 units Completed : 01/13/25 Expires: 01/13/26 Sample Method : SOP.T.20.010

Residual Solvents

0.800 0.200	ppm	0		
		8	PASS	ND
	ppm	2	PASS	ND
50.000	ppm	500	PASS	ND
75.000	ppm	750	PASS	ND
6.000	ppm	60	PASS	ND
0.100	ppm	1	PASS	ND
500.000	ppm	5000	PASS	ND
0.200	ppm	2	PASS	ND
12.500	ppm	125	PASS	ND
500.000	ppm	5000	PASS	ND
40.000	ppm	400	PASS	ND
50.000	ppm	500	PASS	ND
0.500	ppm	5	PASS	ND
500.000	ppm	5000	PASS	ND
25.000	ppm	250	PASS	ND
25.000	ppm	250	PASS	ND
75.000	ppm	750	PASS	ND
500.000	ppm	5000	PASS	ND
15.000	ppm	150	PASS	ND
15.000	ppm	150	PASS	ND
2.500	ppm	25	PASS	ND
Weight: 0.0254g				Extracted by: 850
		Batch Date : 01/09/25 1	7:17:53	
	6.000 0.100 500.000 0.200 12.500 500.000 40.000 50.000 0.500 500.000 25.000 25.000 75.000 500.000 15.000 15.000 2.500 Weight:	6.000 ppm 0.100 ppm 0.200 ppm 12.500 ppm 500.000 ppm 12.500 ppm 500.000 ppm 500.000 ppm 500.000 ppm 50.000 ppm 500.000 ppm 500.000 ppm 25.000 ppm 25.000 ppm 500.000 ppm 500.000 ppm 25.000 ppm 500.000 ppm 15.000 ppm 15.000 ppm 2.500 ppm 2.500 ppm 2.500 ppm	6.000 ppm 60 0.100 ppm 1 500.000 ppm 5000 0.200 ppm 2 12.500 ppm 125 500.000 ppm 5000 40.000 ppm 5000 50.000 ppm 500 0.500 ppm 500 0.500 ppm 5000 25.000 ppm 250 25.000 ppm 250 25.000 ppm 750 500.000 ppm 5000 25.000 ppm 250 75.000 ppm 5000 15.000 ppm 150 15.000 ppm 150 2.500 ppm 25 Weight: Extraction date: 0.0254g 01/10/25 14:31:18 01/10/25 14:31:18	6.000 ppm 60 PASS 0.100 ppm 1 PASS 500.000 ppm 5000 PASS 0.200 ppm 2 PASS 12.500 ppm 125 PASS 500.000 ppm 5000 PASS 500.000 ppm 5000 PASS 500.000 ppm 5000 PASS 40.000 ppm 5000 PASS 50.000 ppm 500 PASS 50.000 ppm 5000 PASS 500.000 ppm 5000 PASS 500.000 ppm 5000 PASS 25.000 ppm 250 PASS 500.000 ppm 750 PASS 500.000 ppm 5000 PASS 500.000 ppm 150 PASS 500.000 ppm 150 PASS 15.000 ppm 150 PASS

Reagent: 030420.09 Consumables : 430274: 319008 Pipette : DA-309 25 uL Syringe 35028

Residual solvents analysis is performed utilizing Gas Chromatography Mass Spectrometry in accordance with with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 01/13/25

PASSED

PASSED

Type: Live Rosin

FloraCal Live Rosin Fresh Press 1g - Alpine Guav (H) Alpine Guav (H) Matrix : Derivative

PASSED

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50108015-007 Harvest/Lot ID: 8411870948254064 Batch#: 8411870948254064 Sample Size Received : 16 units

Sampled : 01/08/25 Ordered : 01/08/25 Sample Size Received : 16 units Total Amount : 382 units Completed : 01/13/25 Expires: 01/13/26 Sample Method : SOP.T.20.010

Page 5 of 6

Ţ	Micro	bial			PAS	SED	သို့	Mycoto	xins				PAS	SED
Analyte		LC	DD Units	Result	Pass / Fail	Action Level	Analyte			LOD	Units	Result	Pass / Fail	Action Level
ASPERGILLU	S TERREUS			Not Present	PASS	Level	AFLATOXIN	82		0.00	ppm	ND	PASS	0.02
ASPERGILLU				Not Present	PASS		AFLATOXIN			0.00	ppm	ND	PASS	0.02
ASPERGILLU	S FUMIGATUS			Not Present	PASS		OCHRATOXI	N A		0.00	ppm	ND	PASS	0.02
ASPERGILLUS				Not Present	PASS		AFLATOXIN			0.00	ppm	ND	PASS	0.02
SALMONELLA	A SPECIFIC GEN	E		Not Present	PASS		AFLATOXIN	G2		0.00	ppm	ND	PASS	0.02
ECOLI SHIGE	LLA			Not Present	PASS		Analyzed by:	Weight:	Evtro	ction dat		E	xtracted	
TOTAL YEAS	F AND MOLD	10	.00 CFU/g	<10	PASS	100000	3621, 585, 144)/25 12:5			621,450	Jy.
nalyzed by: 044, 4520, 58	5, 1440	Weight: 0.82g	Extraction 01/09/25 1		Extracted 4520,404			od : SOP.T.30.101.FL (FL (Davie), SOP.T.40.1			40.101.Fl	. (Gainesvi	lle),	
nalytical Batc	d: SOP.T.40.056 h: DA081978MIC d: PathogenDx S	2			Batch Date :	01/00/25	Instrument Us	<pre>h : DA082005MYC ed : N/A : 01/10/25 11:26:06</pre>		B	atch Date	:01/09/25	5 09:59:4	7
DA-020,Fisher Scientific Isote	ycler DA-010,Fish Scientific Isotem mp Heat Block (5 : 01/10/25 11:27	p Heat Bloc 5*C) DA-02	k (95*C) DA-0		08:20:34		081023.01 Consumables :	325.R33; 010825.R29; 221021DD 93; DA-094; DA-219	010825.R	01; 0102	25.R45; 1	L02124.R0	8; 01082	5.R02;
Reagent : 1115 Consumables : Pipette : N/A	24.104; 111524. 7577004077	107; 12182	4.R48; 07242	4.14				ing utilizing Liquid Chron n F.S. Rule 64ER20-39.	natography v	vith Triple	-Quadrupo	le Mass Spe	ctrometry	in
Analyzed by: 1044, 4777, 58		Weight: 0.82g	Extraction 01/09/25 1	0:56:14	Extracted 4520,404		Hg	Heavy M	1eta	ls		l	PAS	SED
Analytical Batc	d:SOP.T.40.208 h:DA081979TYN	Ą					Metal			LOD	Units	Result	Pass /	Action
nstrument Use DA-382]	d : Incubator (25	*C) DA- 328	3 [calibrated \	vith Batch Da	te:01/09/2	5 08:21:3	,				•		Fail	Level
	: 01/11/25 17:43:	:24					TOTAL CONT	AMINANT LOAD ME	TALS	0.08	ppm	ND	PASS	1.1
ilution : 10							ARSENIC			0.02	ppm	<0.100	PASS	0.2
	24.104; 111524.	107; 11072	4.R13				CADMIUM			0.02	ppm	ND	PASS	0.2
onsumables :							MERCURY			0.02	ppm	ND	PASS	0.2
ipette : N/A							LEAD			0.02	ppm	ND	PASS	0.5
	mold testing is perfo F.S. Rule 64ER20-3		ng MPN and trac	litional culture base	ed techniques	in	Analyzed by: 1022, 4056, 33	79, 585, 1440	Weight: 0.2297g		oction dat 9/25 11:1		Extrac 4056	ted by:
							Analytical Bate	od : SOP.T.30.082.FL, h : DA081988HEA ed : DA-ICPMS-004 : 01/10/25 11:11:38	SOP.T.40.0		h Date : ()1/09/25 0	9:31:14	
							Dilution : 50 Reagent : 1220 120324.07; 01)24.R10; 112624.R32;			25.R37; ()10625.R0	7; 01062	5.R06;

Consumables : 040724CH01; J609879-0193; 179436

Pipette : DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 01/13/25

Type: Live Rosin

..... FloraCal Live Rosin Fresh Press 1g - Alpine Guav (H) Alpine Guav (H) Matrix : Derivative

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA50108015-007 Harvest/Lot ID: 8411870948254064 Batch#: 8411870948254064 Sample Size Received: 16 units Sampled : 01/08/25 Ordered : 01/08/25

Total Amount : 382 units Completed : 01/13/25 Expires: 01/13/26 Sample Method : SOP.T.20.010

		Filth/For Material	PASSED							
	nalyte ilth and Fore	ign Material	Result ND	P/F PASS	Action Level					
	nalyzed by: 379, 585, 1440	Weight: 1g	=/(1)	action da)9/25 10:!		Extracted by: 1879				
Aı In	Analysis Method : SOP.T.40.090 Analytical Batch : DA082016FiL Instrument Used : Filth/Foreign Material Microscope Analyzed Date : 01/09/25 14:18:10 Batch Date : 01/09/25 14:18:10									
Re Ce	ilution: N/A eagent: N/A onsumables: N pette: N/A	/A								
		naterial inspection is per cordance with F.S. Rule			spection utilizi	ng naked ey	e and microscope			

Analyte Water Activity	-	L OD 0.010	Units aw	Result 0.503	P/F PASS	Action Level 0.85	
Analyzed by: Weight: Extraction date: Extracted 4512, 585, 1440 0.2422g 01/09/25 15:37:47 4512							
Analysis Method : SOP Analytical Batch : DA0 Instrument Used : DA2 Analyzed Date : 01/10,	82019WAT 257 Rotronic Hyg	ıroPalr	n	Batch Dat	t e : 01/09/2	25 10:49:49	
Dilution : N/A Reagent : 101724.36 Consumables : PS-14 Pipette : N/A							

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 01/13/25

PASSED

Page 6 of 6