

COMPLIANCE FOR RETAIL

Laboratory Sample ID: DA41226015-007

Kaycha Labs

FloraCal Live Badder Rosin 1g - White Trffl Mnts (I)

White Trffl Mnts (I) Matrix: Derivative Classification: High THC

Type: Rosin

Production Method: Other - Not Listed Harvest/Lot ID: 0263729581078438

Batch#: 0263729581078438

Cultivation Facility: FL - Indiantown (4430) Processing Facility: FL - Indiantown (4430)

Source Facility: FL - Indiantown (4430) Seed to Sale#: 4560135213204820

Harvest Date: 12/23/24

Sample Size Received: 16 units Total Amount: 926 units Retail Product Size: 1 gram

Servings: 1

Ordered: 12/26/24 Sampled: 12/26/24

Completed: 12/30/24

Sampling Method: SOP.T.20.010

PASSED

Pages 1 of 6

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US

Dec 30, 2024 | Sunnyside

SAFETY RESULTS

Pesticides PASSED

Heavy Metals **PASSED**

Certificate of Analysis

Microbials **PASSED**

Mycotoxins **PASSED**

Residuals Solvents PASSED

PASSED

Batch Date: 12/27/24 09:07:38

Water Activity **PASSED**

Moisture **NOT TESTED**

Terpenes **PASSED**

PASSED

Cannabinoid

Total THC

Total THC/Container : 712.860 mg

Total CBD

Total Cannabinoids

Total Cannabinoids/Container: 859.020

								mg		
	-									
	-									
	-									
	-									
					_					
										CBC
0.990	80.156	ND	0.313	0.106	0.257	3.878	ND	ND	ND	0.202
9.90	801.56	ND	3.13	1.06	2.57	38.78	ND	ND	ND	2.02
0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
%	%	%	%	%	%	%	%	%	%	%
	9.90 0.001	0.990 80.156 9.90 801.56 0.001 0.001	0.990 80.156 ND 9.90 801.56 ND 0.001 0.001 0.001	0.990 80.156 ND 0.313 9.90 801.56 ND 3.13 0.001 0.001 0.001 0.001	0.990 80.156 ND 0.313 0.106 9.90 801.56 ND 3.13 1.06 0.001 0.001 0.001 0.001 0.001	0.990 80.156 ND 0.313 0.106 0.257 9.90 801.56 ND 3.13 1.06 2.57 0.001 0.001 0.001 0.001 0.001 0.001	0.990 80.156 ND 0.313 0.106 0.257 3.878 9.90 801.56 ND 3.13 1.06 2.57 38.78 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.990 80.156 ND 0.313 0.106 0.257 3.878 ND 9.90 801.56 ND 3.13 1.06 2.57 38.78 ND 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	D9-THC THCA CBD CBDA D8-THC CBG CBGA CBN THCV 0.990 80.156 ND 0.313 0.106 0.257 3.878 ND ND 9.90 801.56 ND 3.13 1.06 2.57 38.78 ND ND 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	D9-THC THCA CBD CBDA D8-THC CBG CBGA CBN THCV CBDV 0.990 80.156 ND 0.313 0.106 0.257 3.878 ND ND ND ND 9.90 801.56 ND 3.13 1.06 2.57 38.78 ND ND ND ND 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Analysis Method: SOP.T.40.031, SOP.T.30.031

Analytical Batch : DA081635POT Instrument Used : DA-LC-003 Analyzed Date: 12/30/24 09:26:44

Reagent: 120624.R01; 071624.04; 121624.R03

Consumables: 947.110; 04312111; LCJ0311R; 040724CH01; 1009468980; 1009389944; 280670723

Pipette: DA-065: DA-066: DA-067

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA Testing 97164

Kaycha Labs

FloraCal Live Badder Rosin 1g - White Trffl Mnts (I)

White Trffl Mnts (I) Matrix: Derivative

Type: Rosin

Certificate of Analysis

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA41226015-007 Harvest/Lot ID: 0263729581078438

Sampled: 12/26/24 **Ordered:** 12/26/24

Batch#: 0263729581078438 Sample Size Received: 16 units Total Amount: 926 units

Completed : 12/30/24 **Expires:** 12/30/25 Sample Method: SOP.T.20.010

Page 2 of 6

Terpenes

PASSED

Terpenes	LOD (%)	mg/uni	t %	Result (%)		Terpenes	LOD (%)	mg/uni	it %	Result (%)
TOTAL TERPENES	0.007	73.28	7.328			VALENCENE	0.007	ND	ND	
BETA-CARYOPHYLLENE	0.007	22.72	2.272			ALPHA-CEDRENE	0.005	ND	ND	
LIMONENE	0.007	16.22	1.622			ALPHA-PHELLANDRENE	0.007	ND	ND	
ALPHA-HUMULENE	0.007	9.68	0.968			ALPHA-TERPINENE	0.007	ND	ND	
FARNESENE	0.007	4.59	0.459			ALPHA-TERPINOLENE	0.007	ND	ND	
ALPHA-PINENE	0.007	4.32	0.432			CIS-NEROLIDOL	0.003	ND	ND	
BETA-PINENE	0.007	3.97	0.397			GAMMA-TERPINENE	0.007	ND	ND	
LINALOOL	0.007	3.53	0.353			TRANS-NEROLIDOL	0.005	ND	ND	
FENCHYL ALCOHOL	0.007	2.71	0.271			Analyzed by:	Weight:	Extra	action date:	Extracted by:
ALPHA-TERPINEOL	0.007	2.14	0.214			4451, 3605, 585, 1440	0.2342g		7/24 12:21:36	
BETA-MYRCENE	0.007	0.96	0.096			Analysis Method: SOP.T.30.061A.FL, SOP.T.4	0.061A.FL			
OCIMENE	0.007	0.66	0.066			Analytical Batch : DA081644TER Instrument Used : DA-GCMS-009				te: 12/27/24 10:21:19
BORNEOL	0.013	0.56	0.056			Analyzed Date : 12/30/24 09:32:41			Batch Da	te: 12/27/24 10:21:19
CAMPHENE	0.007	0.50	0.050		i i	Dilution: 10				
GERANIOL	0.007	0.25	0.025			Reagent: 032524.18				
ALPHA-BISABOLOL	0.007	0.24	0.024			Consumables: 947.110; 2240626; 28067072	3			
CARYOPHYLLENE OXIDE	0.007	0.23	0.023			Pipette : DA-065				
3-CARENE	0.007	ND	ND			Terpenoid testing is performed utilizing Gas Chrom	atography Mass Spectro	netry. For a	Il Flower sample	es, the Total Terpenes % is dry-weight corrected.
CAMPHOR	0.007	ND	ND							
CEDROL	0.007	ND	ND							
EUCALYPTOL	0.007	ND	ND							
FENCHONE	0.007	ND	ND							
GERANYL ACETATE	0.007	ND	ND							
GUAIOL	0.007	ND	ND							
HEXAHYDROTHYMOL	0.007	ND	ND							
ISOBORNEOL	0.007	ND	ND							
ISOPULEGOL	0.007	ND	ND							
NEROL	0.007	ND	ND							
PULEGONE	0.007	ND	ND							
SABINENE	0.007	ND	ND							
SABINENE HYDRATE	0.007	ND	ND							
Total (%)			7.328							

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs

FloraCal Live Badder Rosin 1g - White Trffl Mnts (I)

White Trffl Mnts (I) Matrix: Derivative Type: Rosin

Certificate of Analysis

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Fmail: Julio Chavez@crescolabs.com Sample : DA41226015-007 Harvest/Lot ID: 0263729581078438

Sampled: 12/26/24 **Ordered:** 12/26/24

Batch#: 0263729581078438 Sample Size Received: 16 units Total Amount: 926 units

Completed: 12/30/24 Expires: 12/30/25 Sample Method: SOP.T.20.010

Page 3 of 6

Pesticides

PASSED

esticide		Units	Action Level	Pass/Fail	Result	Pesticide		LOD	Units	Action Level	Pass/Fail	Resu
TAL CONTAMINANT LOAD (PESTICIDES)	0.010	1.1.	5	PASS	ND	OXAMYL		0.010	ppm	0.5	PASS	ND
TAL DIMETHOMORPH	0.010		0.2	PASS	ND	PACLOBUTRAZOL		0.010	ppm	0.1	PASS	ND
TAL PERMETHRIN	0.010	ppm	0.1	PASS	ND	PHOSMET		0.010		0.1	PASS	ND
TAL PYRETHRINS	0.010		0.5	PASS	ND	PIPERONYL BUTOXIDE		0.010	nnm	3	PASS	ND
TAL SPINETORAM	0.010		0.2	PASS	ND			0.010		0.1	PASS	ND
TAL SPINOSAD	0.010	ppm	0.1	PASS	ND	PRALLETHRIN						
AMECTIN B1A	0.010	ppm	0.1	PASS	ND	PROPICONAZOLE		0.010		0.1	PASS	ND
EPHATE	0.010	ppm	0.1	PASS	ND	PROPOXUR		0.010		0.1	PASS	ND
EQUINOCYL	0.010	ppm	0.1	PASS	ND	PYRIDABEN		0.010	ppm	0.2	PASS	ND
ETAMIPRID	0.010	ppm	0.1	PASS	ND	SPIROMESIFEN		0.010	ppm	0.1	PASS	ND
DICARB	0.010	ppm	0.1	PASS	ND	SPIROTETRAMAT		0.010	ppm	0.1	PASS	ND
DXYSTROBIN	0.010	ppm	0.1	PASS	ND	SPIROXAMINE		0.010	mag	0.1	PASS	ND
ENAZATE	0.010	ppm	0.1	PASS	ND	TEBUCONAZOLE		0.010	ppm	0.1	PASS	ND
ENTHRIN	0.010	ppm	0.1	PASS	ND	THIACLOPRID		0.010		0.1	PASS	ND
SCALID	0.010	ppm	0.1	PASS	ND			0.010		0.5	PASS	ND
RBARYL	0.010	ppm	0.5	PASS	ND	THIAMETHOXAM					PASS	
RBOFURAN	0.010	ppm	0.1	PASS	ND	TRIFLOXYSTROBIN		0.010		0.1		ND
LORANTRANILIPROLE	0.010	ppm	1	PASS	ND	PENTACHLORONITROBEN	ZENE (PCNB) *	0.010		0.15	PASS	ND
LORMEQUAT CHLORIDE	0.010	ppm	1	PASS	ND	PARATHION-METHYL *		0.010		0.1	PASS	ND
LORPYRIFOS	0.010	ppm	0.1	PASS	ND	CAPTAN *		0.070	ppm	0.7	PASS	ND
FENTEZINE	0.010	ppm	0.2	PASS	ND	CHLORDANE *		0.010	ppm	0.1	PASS	ND
JMAPHOS	0.010	ppm	0.1	PASS	ND	CHLORFENAPYR *		0.010	mag	0.1	PASS	ND
MINOZIDE	0.010	ppm	0.1	PASS	ND	CYFLUTHRIN *		0.050	ppm	0.5	PASS	ND
ZINON	0.010	ppm	0.1	PASS	ND	CYPERMETHRIN *		0.050		0.5	PASS	ND
HLORVOS	0.010	ppm	0.1	PASS	ND					0.5		
METHOATE	0.010	ppm	0.1	PASS	ND	Analyzed by: 3621, 585, 1440	Weight: 0.2508g		on date: 13:05:14		Extracted I 3621,450	by:
IOPROPHOS	0.010	ppm	0.1	PASS	ND	Analysis Method : SOP.T.3				COD T 40 101		.\
DFENPROX	0.010	ppm	0.1	PASS	ND	SOP.T.40.102.FL (Davie)	U.1U1.FL (Gainesvine), 3UF.1.3U.1U	Z.FL (Davie	, 30F.1.40.101	rL (Gairlesville	:),
XAZOLE	0.010	ppm	0.1	PASS	ND	Analytical Batch : DA08164	49PES					
IHEXAMID	0.010	ppm	0.1	PASS	ND	Instrument Used : DA-LCM	S-005 (PES)		Batc	h Date: 12/27/	24 10:35:15	
IOXYCARB	0.010	ppm	0.1	PASS	ND	Analyzed Date: 12/30/24 1	L0:03:18					
IPYROXIMATE	0.010	ppm	0.1	PASS	ND	Dilution: 250						
RONIL	0.010	ppm	0.1	PASS	ND	Reagent: 122424.R43; 122	2424.R03; 122024.RI	05; 122424.R4	6; 102124.F	108; 122424.RC	01; 081023.01	
DNICAMID	0.010	mag	0.1	PASS	ND	Consumables: 221021DD Pipette: DA-093; DA-094;	DA 210					
JDIOXONIL	0.010	1.1	0.1	PASS	ND	Testing for agricultural agent		a Liquid Chron	atography 7	rinle-Ouadrupo	la Mass Spartro	metry in
XYTHIAZOX	0.010		0.1	PASS	ND	accordance with F.S. Rule 64		ig Eiquiu CillOll	iacograpity I	ripie-Quaurupo	ic mass spectrur	neu y III
AZALIL	0.010		0.1	PASS	ND	Analyzed by:	Weight:	Extractio	n date:		Extracted b	ov:
DACLOPRID	0.010		0.4	PASS	ND	450, 585, 1440	0.2508g	12/27/24			3621,450	
ESOXIM-METHYL	0.010		0.1	PASS	ND	Analysis Method : SOP.T.3	0.151.FL (Gainesville), SOP.T.30.15	1A.FL (Davi	e), SOP.T.40.15	1.FL	
LATHION	0.010		0.2	PASS	ND	Analytical Batch : DA0816						
FALAXYL	0.010		0.1	PASS	ND	Instrument Used : DA-GCM			Batch Dat	e:12/27/24 10	:37:15	
THIOCARB	0.010		0.1	PASS	ND	Analyzed Date: 12/30/24 1	10:02:26					
THOMYL	0.010		0.1	PASS	ND	Dilution: 250	1022 01. 122224 200	. 122224 510				
VINPHOS	0.010		0.1	PASS	ND	Reagent: 122024.R05; 08: Consumables: 221021DD;						
CLOBUTANIL	0.010		0.1	PASS	ND	Pipette : DA-080: DA-146:		101, 174/3001	-			

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs

FloraCal Live Badder Rosin 1g - White Trffl Mnts (I)

White Trffl Mnts (I) Matrix: Derivative Type: Rosin

Certificate of Analysis

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA41226015-007 Harvest/Lot ID: 0263729581078438

Sampled: 12/26/24 Ordered: 12/26/24

Batch#: 0263729581078438 Sample Size Received: 16 units Total Amount: 926 units

Completed: 12/30/24 Expires: 12/30/25 Sample Method: SOP.T.20.010

Page 4 of 6

Residual Solvents

Э Л			
- 14		3	ы
-	_		

Solvents	LOD	Units	Action Level	Pass/Fail	Result	
1,1-DICHLOROETHENE	0.800	ppm	8	PASS	ND	
1,2-DICHLOROETHANE	0.200	ppm	2	PASS	ND	
2-PROPANOL	50.000	ppm	500	PASS	ND	
ACETONE	75.000	ppm	750	PASS	ND	
ACETONITRILE	6.000	ppm	60	PASS	ND	
BENZENE	0.100	ppm	1	PASS	ND	
BUTANES (N-BUTANE)	500.000	ppm	5000	PASS	ND	
CHLOROFORM	0.200	ppm	2	PASS	ND	
DICHLOROMETHANE	12.500	ppm	125	PASS	ND	
ETHANOL	500.000	ppm	5000	PASS	ND	
ETHYL ACETATE	40.000	ppm	400	PASS	ND	
ETHYL ETHER	50.000	ppm	500	PASS	ND	
ETHYLENE OXIDE	0.500	ppm	5	PASS	ND	
HEPTANE	500.000	ppm	5000	PASS	ND	
METHANOL	25.000	ppm	250	PASS	ND	
N-HEXANE	25.000	ppm	250	PASS	ND	
PENTANES (N-PENTANE)	75.000	ppm	750	PASS	ND	
PROPANE	500.000	ppm	5000	PASS	ND	
TOLUENE	15.000	ppm	150	PASS	ND	
TOTAL XYLENES	15.000	ppm	150	PASS	ND	
TRICHLOROETHYLENE	2.500	ppm	25	PASS	ND	
Analyzed by:	Weight:	Extraction date:			Extracted by:	

850, 585, 1440 12/30/24 12:36:00 0.0288g

Analysis Method: SOP.T.40.041.FL Analytical Batch: DA081659SOL Instrument Used: DA-GCMS-002 **Analyzed Date:** 12/30/24 14:38:59

Dilution: 1 Reagent: N/A Consumables: N/A Pipette : N/A

Residual solvents analysis is performed utilizing Gas Chromatography Mass Spectrometry in accordance with with F.S. Rule 64ER20-39.

Batch Date: 12/27/24 15:24:14

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs

FloraCal Live Badder Rosin 1g - White Trffl Mnts (I)

White Trffl Mnts (I) Matrix: Derivative

Type: Rosin

Certificate of Analysis

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Fmail: Julio Chavez@crescolabs.com Sample : DA41226015-007 Harvest/Lot ID: 0263729581078438

Sampled: 12/26/24 Ordered: 12/26/24

Batch#: 0263729581078438 Sample Size Received: 16 units Total Amount: 926 units Completed: 12/30/24 Expires: 12/30/25 Sample Method: SOP.T.20.010

Page 5 of 6

Microbial

PASSED

Analyte	LOD	Units	Result	Pass / Fail	Action Level	Analyte		LOD	Units	Result	Pass / Fail	Action Level
ASPERGILLUS TERREUS			Not Present	PASS		AFLATOXIN B2		0.00	ppm	ND	PASS	0.02
ASPERGILLUS NIGER			Not Present	PASS		AFLATOXIN B1		0.00	ppm	ND	PASS	0.02
ASPERGILLUS FUMIGATUS			Not Present	PASS		OCHRATOXIN A		0.00	ppm	ND	PASS	0.02
ASPERGILLUS FLAVUS			Not Present	PASS		AFLATOXIN G1		0.00	ppm	ND	PASS	0.02
SALMONELLA SPECIFIC GENE			Not Present	PASS		AFLATOXIN G2		0.00	ppm	ND	PASS	0.02
ECOLI SHIGELLA			Not Present	PASS		Analyzed by:	Weight:	Extraction dat	e:	E	xtracted	bv:
TOTAL YEAST AND MOLD	10.00	CFU/g	<10	PASS	100000		0.2508g	12/27/24 13:0			621,450	-,-

Analyzed by: Weight: **Extraction date:** Extracted by: 4044, 4520, 585, 1440 12/27/24 10:32:40 0.955g

 $\begin{array}{l} \textbf{Analysis Method: } SOP.T.40.056C, \ SOP.T.40.058.FL, \ SOP.T.40.209.FL \\ \textbf{Analytical Batch: } DA081624 \\ \textbf{MIC} \end{array}$

Instrument Used: PathogenDx Scanner DA-111,Applied Biosystems
2720 Thermocycler DA-010,Fisher Scientific Isotemp Heat Block (55*C)
DA-020,Fisher Scientific Isotemp Heat Block (95*C) DA-049,Fisher Batch Date: 12/27/24

Scientific Isotemp Heat Block (55*C) DA-021

Analyzed Date: 12/30/24 09:22:20

Reagent: 111524.93; 111524.124; 120524.R12; 072424.14
Consumables: 7578001080

Pipette: N/A

Analyzed by:	Weight:	Extraction date:	Extracted by:
4044, 1879, 4777, 585, 1440	0.955g	12/27/24 10:32:40	4520

Analysis Method: SOP.T.40.208 (Gainesville), SOP.T.40.209.FL

Analytical Batch : DA081625TYM

Instrument Used: Incubator (25*C) DA- 328 [calibrated with Batch Date: 12/27/24 08:01:56

Analyzed Date : 12/30/24 09:26:02

Dilution: 10

Reagent: 111524.93; 111524.124; 110724.R13

Consumables : N/A Pipette : N/A

Total yeast and mold testing is performed utilizing MPN and traditional culture based techniques in accordance with F.S. Rule 64ER20-39.

Ç	Mycotoxins		
alyte		LOD	
	_		

Analysis Method: SOP.T.30.101.FL (Gainesville), SOP.T.40.101.FL (Gainesville),

SOP.T.30.102.FL (Davie), SOP.T.40.102.FL (Davie)

Analytical Batch : DA081650MYC Instrument Used : N/A Batch Date: 12/27/24 10:37:13

Analyzed Date: 12/30/24 09:25:18

Dilution: 250
Reagent: 122424.R43; 122424.R03; 122024.R05; 122424.R46; 102124.R08; 122424.R01;

081023.01 Consumables: 221021DD Pipette: DA-093; DA-094; DA-219

Mycotoxins testing utilizing Liquid Chromatography with Triple-Quadrupole Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

Heavy Metals

Metal		LOD	Units	Result	Pass / Fail	Action Level	
TOTAL CONTAMINA	NT LOAD METALS	0.08	ppm	ND	PASS	1.1	
ARSENIC		0.02	ppm	ND	PASS	0.2	
CADMIUM		0.02	ppm	ND	PASS	0.2	
MERCURY		0.02	ppm	ND	PASS	0.2	
LEAD		0.02	ppm	ND	PASS	0.5	
Analyzed by:	Woight	Extraction dat			Evtractor	l by	

4056, 585, 1440 0.2644g 12/27/24 12:19:20 Analysis Method: SOP.T.30.082.FL, SOP.T.40.082.FL

Analytical Batch : DA081641HEA Instrument Used : DA-ICPMS-004

Batch Date: 12/27/24 10:00:17 Analyzed Date: 12/30/24 09:21:08

Dilution: 50

Reagent : 122024.R10; 112624.R32; 122324.R08; 122024.R09; 122324.R06; 122324.R07; 120324.07; 122324.R22

Consumables: 040724CH01; J609879-0193; 179436 Pipette: DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs

FloraCal Live Badder Rosin 1g - White Trffl Mnts (I)

White Trffl Mnts (I) Matrix: Derivative Type: Rosin

Certificate of Analysis

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Fmail: Julio Chavez@crescolabs.com Sample : DA41226015-007 Harvest/Lot ID: 0263729581078438

Batch#: 0263729581078438 Sample Size Received: 16 units Sampled: 12/26/24

Ordered: 12/26/24

Total Amount: 926 units Completed: 12/30/24 Expires: 12/30/25 Sample Method: SOP.T.20.010

Page 6 of 6

Filth/Foreign **Material**

PASSED

Analyte LOD Units Result P/F **Action Level** Filth and Foreign Material 0.100 % ND PASS 1 Analyzed by: 585, 1440 Extraction date: Weight: 1g 12/30/24 09:46:20 585

Analysis Method: SOP.T.40.090

Analytical Batch : DA081626FIL
Instrument Used : Filth/Foreign Material Microscope

Batch Date: 12/27/24 08:21:45

Analyzed Date : 12/30/24 09:48:42

Dilution: N/AReagent: N/A Consumables : N/A Pipette: N/A

Filth and foreign material inspection is performed by visual inspection utilizing naked eye and microscope technologies in accordance with F.S. Rule 64ER20-39.

Water Activity

Analyte	L	OD Units	Result	P/F	Action Level
Water Activity	(0.010 aw	0.546	PASS	0.85
Analyzed by: 4512 585 1440	Weight:	Extraction (tracted by:

Analysis Method : SOP.T.40.019

Analytical Batch : DA081655WAT Instrument Used : DA257 Rotronic HygroPalm Batch Date: 12/27/24 10:43:03

Analyzed Date: 12/30/24 09:24:17

Dilution: N/A Reagent: 101724.36 Consumables : PS-14 Pipette: N/A

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164