

COMPLIANCE FOR RETAIL

SUNNYSIDE

DA41210014-013

Laboratory Sample ID: DA41210014-013

Kaycha Labs

FloraCal Live Badder Rosin 1g - Apl and Bnanas (S)

Apl and Bnanas (S) Matrix: Derivative Classification: High THC Type: Live Badder

Production Method: Other - Not Listed Harvest/Lot ID: 6876660146217682

Batch#: 6876660146217682

Cultivation Facility: FL - Indiantown (4430) Processing Facility: FL - Indiantown (4430)

> Source Facility: FL - Indiantown (4430) Seed to Sale#: 2748277890789993

Harvest Date: 12/06/24

Sample Size Received: 16 units Total Amount: 970 units Retail Product Size: 1 gram

Servings: 1

Ordered: 12/10/24 Sampled: 12/10/24

Completed: 12/13/24

Sampling Method: SOP.T.20.010

PASSED

Pages 1 of 6

Sunnyside

SAFETY RESULTS

22205 Sw Martin Hwy indiantown, FL, 34956, US

Pesticides **PASSED**

Heavy Metals PASSED

Certificate of Analysis

Microbials **PASSED**

Mycotoxins **PASSED**

Residuals Solvents **PASSED**

Filth **PASSED**

Batch Date: 12/11/24 09:40:04

Water Activity **PASSED**

TESTED

Ternenes **PASSED**

PASSED

Cannabinoid

Dec 13, 2024 | Sunnyside

Total THC

5.477% Total THC/Container : 754.770 mg

Total CBD

Total CBD/Container: 2.890 mg

Total Cannabinoids

Extracted by: 3335

Total Cannabinoids/Container: 885.410

								mg		
	_									
	_									
	_									
	_									
D9-THC	THCA	CBD	CBDA	D8-THC	CBG	CBGA	CBN	THCV	CBDV	CBC
1.050	84.866	ND	0.330	0.134	0.380	1.407	0.055	ND	ND	0.319
10.50	848.66	ND	3.30	1.34	3.80	14.07	0.55	ND	ND	3.19
0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
%	%	%	%	%	%	%	%	%	%	%
	1.050 10.50 0.001	1.050 84.866 10.50 848.66 0.001 0.001	1.050 84.866 ND 10.50 848.66 ND 0.001 0.001 0.001	1.050 84.866 ND 0.330 10.50 848.66 ND 3.30 0.001 0.001 0.001 0.001	1.050 84.866 ND 0.330 0.134 10.50 848.66 ND 3.30 1.34 0.001 0.001 0.001 0.001 0.001	1.050 84.866 ND 0.330 0.134 0.380 10.50 848.66 ND 3.30 1.34 3.80 0.001 0.001 0.001 0.001 0.001 0.001	1.050 84.866 ND 0.330 0.134 0.380 1.407 10.50 848.66 ND 3.30 1.34 3.80 14.07 0.001 0.001 0.001 0.001 0.001 0.001	1.050 84.866 ND 0.330 0.134 0.380 1.407 0.055 10.50 848.66 ND 3.30 1.34 3.80 14.07 0.55 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	1.050 84.866 ND 0.330 0.134 0.380 1.407 0.055 ND 10.50 848.66 ND 3.30 1.34 3.80 14.07 0.55 ND 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	1.050 84.866 ND 0.330 0.134 0.380 1.407 0.055 ND ND 10.50 848.66 ND 3.30 1.34 3.80 14.07 0.55 ND ND 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Extraction date: 12/11/24 11:51:00

Analysis Method: SOP.T.40.031, SOP.T.30.031
Analytical Batch: DA081050POT

Instrument Used: DA-LC-003 Analyzed Date: 12/12/24 09:19:17

Dilution: 400

Reagent: 120624.R01; 092724.11; 111324.R47 Consumables: 947.109; 040724CH01; CE0123; R1KB14270

Pipette: DA-079; DA-108; DA-078

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA Testing 97164

Signature 12/13/24

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Kaycha Labs

FloraCal Live Badder Rosin 1g - Apl and Bnanas (S)

Apl and Bnanas (S) Matrix: Derivative Type: Live Badder

Certificate of Analysis

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA41210014-013 Harvest/Lot ID: 6876660146217682

Sampled: 12/10/24 Ordered: 12/10/24

Batch#: 6876660146217682 Sample Size Received: 16 units Total Amount : 970 units

Completed: 12/13/24 **Expires:** 12/13/25 Sample Method: SOP.T.20.010

Page 2 of 6

Terpenes

PASSED

Terpenes	LOD (%)	mg/unit	%	Result (%)	Terpenes	LOD (%)	mg/unit	%	Result (%)
TOTAL TERPENES	0.007	64.78	6.478		SABINENE	0.007	ND	ND	
BETA-CARYOPHYLLENE	0.007	14.70	1.470		SABINENE HYDRATE	0.007	ND	ND	
LIMONENE	0.007	14.26	1.426		VALENCENE	0.007	ND	ND	
LINALOOL	0.007	13.18	1.318		ALPHA-CEDRENE	0.005	ND	ND	
BETA-MYRCENE	0.007	4.79	0.479		ALPHA-PHELLANDRENE	0.007	ND	ND	
ALPHA-HUMULENE	0.007	4.62	0.462		ALPHA-TERPINENE	0.007	ND	ND	
ALPHA-BISABOLOL	0.007	3.65	0.365		CIS-NEROLIDOL	0.003	ND	ND	
BETA-PINENE	0.007	1.85	0.185		GAMMA-TERPINENE	0.007	ND	ND	
ALPHA-TERPINEOL	0.007	1.47	0.147		Analyzed by:	Weight:	Extrac	tion date:	Extracted by:
FENCHYL ALCOHOL	0.007	1.40	0.140		3605, 4451, 585, 1440	0.2107g		/24 12:35:30	
ALPHA-PINENE	0.007	1.04	0.104		Analysis Method : SOP.T.30.061A.FL, SO	P.T.40.061A.FL			
TRANS-NEROLIDOL	0.005	1.02	0.102		Analytical Batch : DA081078TER Instrument Used : DA-GCMS-004				ite: 12/11/24 11:21:44
BORNEOL	0.013	0.82	0.082		Analyzed Date : 12/12/24 09:19:18			Batch Da	rte: 12/11/24 11:21:44
CARYOPHYLLENE OXIDE	0.007	0.49	0.049		Dilution: 10				
ALPHA-TERPINOLENE	0.007	0.40	0.040		Reagent: 022224.12				
CAMPHENE	0.007	0.39	0.039		Consumables: 947.109; 240321-634-A;	280670723; CE0123			
FENCHONE	0.007	0.38	0.038		Pipette : DA-065				
OCIMENE	0.007	0.32	0.032		Terpenoid testing is performed utilizing Gas C	hromatography Mass Spectro	metry. For all	Flower sample	es, the Total Terpenes % is dry-weight corrected.
3-CARENE	0.007	ND	ND						
CAMPHOR	0.007	ND	ND						
CEDROL	0.007	ND	ND						
EUCALYPTOL	0.007	ND	ND						
FARNESENE	0.001	ND	ND						
GERANIOL	0.007	ND	ND						
GERANYL ACETATE	0.007	ND	ND						
GUAIOL	0.007	ND	ND						
HEXAHYDROTHYMOL	0.007	ND	ND						
ISOBORNEOL	0.007	ND	ND						
ISOPULEGOL	0.007	ND	ND						
NEROL	0.007	ND	ND						
PULEGONE	0.007	ND	ND						
Total (%)			6.478						

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs

FloraCal Live Badder Rosin 1g - Apl and Bnanas (S)

Apl and Bnanas (S) Matrix: Derivative

Type: Live Badder

Certificate of Analysis

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA41210014-013 Harvest/Lot ID: 6876660146217682

Sampled: 12/10/24 Ordered: 12/10/24

Batch#: 6876660146217682 Sample Size Received: 16 units Total Amount : 970 units

Completed: 12/13/24 **Expires:** 12/13/25 Sample Method: SOP.T.20.010

Page 3 of 6

Pesticides

esticide	LOD	Units	Action Level	Pass/Fail	Result	Pesticide	LOD	Units	Action Level	Pass/Fail	Resul
OTAL CONTAMINANT LOAD (PESTICIDES)	0.010	ppm	5	PASS	< 0.050	OXAMYL	0.010	maa (0.5	PASS	ND
OTAL DIMETHOMORPH	0.010	P. P.	0.2	PASS	ND			1.1		PASS	
OTAL PERMETHRIN	0.010		0.1	PASS	ND	PACLOBUTRAZOL) ppm	0.1		ND
OTAL PYRETHRINS	0.010		0.5	PASS	ND	PHOSMET) ppm	0.1	PASS	ND
OTAL SPINETORAM	0.010	P. P.	0.2	PASS	ND	PIPERONYL BUTOXIDE) ppm	3	PASS	ND
OTAL SPINOSAD	0.010		0.1	PASS	ND	PRALLETHRIN	0.010) ppm	0.1	PASS	ND
BAMECTIN B1A	0.010		0.1	PASS	ND	PROPICONAZOLE	0.010) ppm	0.1	PASS	ND
CEPHATE	0.010		0.1	PASS	ND	PROPOXUR	0.010) ppm	0.1	PASS	ND
CEQUINOCYL	0.010		0.1	PASS	ND	PYRIDABEN	0.010) ppm	0.2	PASS	ND
CETAMIPRID	0.010		0.1	PASS	ND	SPIROMESIFEN	0.010) ppm	0.1	PASS	ND
DICARB	0.010		0.1	PASS	ND	SPIROTETRAMAT) ppm	0.1	PASS	ND
ZOXYSTROBIN	0.010		0.1	PASS	ND	SPIROXAMINE) ppm	0.1	PASS	ND
FENAZATE	0.010	ppm	0.1	PASS	ND				0.1	PASS	ND
FENTHRIN	0.010		0.1	PASS	ND	TEBUCONAZOLE) ppm			
DSCALID	0.010		0.1	PASS	ND	THIACLOPRID) ppm	0.1	PASS	ND
ARBARYL	0.010		0.5	PASS	ND	THIAMETHOXAM) ppm	0.5	PASS	ND
ARBOFURAN	0.010		0.1	PASS	ND	TRIFLOXYSTROBIN	0.010) ppm	0.1	PASS	ND
HLORANTRANILIPROLE	0.010		1	PASS	ND	PENTACHLORONITROBENZENE (PCNB) *	0.010) ppm	0.15	PASS	ND
HLORMEQUAT CHLORIDE	0.010		1	PASS	< 0.050	PARATHION-METHYL *	0.010) ppm	0.1	PASS	ND
HLORPYRIFOS	0.010		0.1	PASS	ND	CAPTAN *	0.070) ppm	0.7	PASS	ND
OFENTEZINE	0.010		0.2	PASS	ND	CHLORDANE *	0.010) ppm	0.1	PASS	ND
DUMAPHOS	0.010		0.1	PASS	ND	CHLORFENAPYR *) ppm	0.1	PASS	ND
AMINOZIDE	0.010		0.1	PASS	ND	CYFLUTHRIN *) ppm	0.5	PASS	ND
AZINON	0.010	ppm	0.1	PASS	ND				0.5	PASS	ND
CHLORVOS	0.010		0.1	PASS	ND	CYPERMETHRIN *) ppm	0.5		
METHOATE	0.010		0.1	PASS	ND	Analyzed by: Weight:		tion date:		Extracted	by:
HOPROPHOS	0.010	ppm	0.1	PASS	ND	3621, 585, 1440 0.2305g Analysis Method : SOP.T.30.101.FL (Gainesvil		24 14:23:17	COD T 40 101	450,585	`
TOFENPROX	0.010	ppm	0.1	PASS	ND	SOP.T.40.102.FL (Davie)	ie), SUP.1.30.1	UZ.FL (Davie),	SUP.1.40.101	.rr (Gainesville),
TOXAZOLE	0.010	ppm	0.1	PASS	ND	Analytical Batch : DA081053PES					
NHEXAMID	0.010	ppm	0.1	PASS	ND	Instrument Used : DA-LCMS-003 (PES)		Batch	Date: 12/11/	24 09:44:42	
NOXYCARB	0.010	ppm	0.1	PASS	ND	Analyzed Date : 12/12/24 12:11:04					
NPYROXIMATE	0.010	ppm	0.1	PASS	ND	Dilution: 250					
PRONIL	0.010	ppm	0.1	PASS	ND	Reagent: 121024.R11; 081023.01	226250111				
ONICAMID	0.010	ppm	0.1	PASS	ND	Consumables: 240321-634-A; 040724CH01; Pipette: N/A	32625UIW				
UDIOXONIL	0.010	ppm	0.1	PASS	ND	Testing for agricultural agents is performed utiliz	ring Liquid Chro	matography Tr	nlo Ouadruno	lo Mass Sportron	notry in
EXYTHIAZOX	0.010	ppm	0.1	PASS	ND	accordance with F.S. Rule 64ER20-39.	ing Elquid Cilio	matography in	pie-Quaurupo	е мазз эресион	neu y iii
IAZALIL	0.010		0.1	PASS	ND	Analyzed by: Weig	ht: Ex	traction date:		Extracted	d by:
IIDACLOPRID	0.010		0.4	PASS	ND	450, 4640, 585, 1440 0.230		/11/24 14:23:1		450,585	
RESOXIM-METHYL	0.010	ppm	0.1	PASS	ND	Analysis Method : SOP.T.30.151.FL (Gainesvil	le), SOP.T.30.1	51A.FL (Davie)	, SOP.T.40.15	1.FL	
ALATHION	0.010		0.2	PASS	ND	Analytical Batch : DA081063VOL					
ETALAXYL	0.010		0.1	PASS	ND	Instrument Used : DA-GCMS-010		Batch Date	:12/11/24 10	:01:14	
ETHIOCARB	0.010	ppm	0.1	PASS	ND	Analyzed Date : 12/12/24 09:18:58 Dilution : 250					
ETHOMYL	0.010	ppm	0.1	PASS	ND	Reagent: 121024.R11; 081023.01; 111824.R	23. 111824 D2	4			
EVINPHOS	0.010		0.1	PASS	ND	Consumables: 240321-634-A; 040724CH01;					
YCLOBUTANIL	0.010		0.1	PASS	ND	Pipette : DA-080; DA-146; DA-218					
ALED		ppm	0.25	PASS	ND	Testing for agricultural agents is performed utiliz	ing Gas Chrom	atography Tripl	e-Ouadrunole	Mass Spectrome	try in

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs

FloraCal Live Badder Rosin 1g - Apl and Bnanas (S)

Apl and Bnanas (S) Matrix: Derivative Type: Live Badder

Certificate of Analysis

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA41210014-013 Harvest/Lot ID: 6876660146217682

Batch#: 6876660146217682 Sample Size Received: 16 units

Sampled: 12/10/24 Ordered: 12/10/24

Total Amount: 970 units Completed: 12/13/24 Expires: 12/13/25 Sample Method: SOP.T.20.010

Page 4 of 6

Residual Solvents

PASSED

Analyzed by: 350, 585, 1440	Weight: 0.0212a	Extraction date: 12/12/24 12:40:16	5		ctracted by:
TRICHLOROETHYLENE	2.500	ppm	25	PASS	ND
TOTAL XYLENES	15.000	ppm	150	PASS	ND
TOLUENE	15.000	ppm	150	PASS	ND
PROPANE	500.000	ppm	5000	PASS	ND
ENTANES (N-PENTANE)	75.000	ppm	750	PASS	ND
I-HEXANE	25.000	ppm	250	PASS	ND
METHANOL	25.000	ppm	250	PASS	ND
HEPTANE	500.000	ppm	5000	PASS	ND
THYLENE OXIDE	0.500	ppm	5	PASS	ND
THYL ETHER	50.000	ppm	500	PASS	ND
THYL ACETATE	40.000	ppm	400	PASS	ND
THANOL	500.000	ppm	5000	PASS	ND
ICHLOROMETHANE	12.500	ppm	125	PASS	ND
HLOROFORM	0.200	ppm	2	PASS	ND
UTANES (N-BUTANE)	500.000	ppm	5000	PASS	ND
ENZENE	0.100	ppm	1	PASS	ND
CETONITRILE	6.000	ppm	60	PASS	ND
ACETONE	75.000	ppm	750	PASS	ND
2-PROPANOL	50.000	ppm	500	PASS	ND
,2-DICHLOROETHANE	0.200	ppm	2	PASS	ND
,1-DICHLOROETHENE	0.800	ppm	8	PASS	ND
olvents	LOD	Units	Action Level	Pass/Fail	Result

12/12/24 12:40:16

Analysis Method: SOP.T.40.041.FL Analytical Batch: DA081081SOL Instrument Used: DA-GCMS-002 **Analyzed Date:** 12/12/24 14:23:09

Dilution: 1 Reagent: N/A Consumables: N/A Pipette : N/A

Residual solvents analysis is performed utilizing Gas Chromatography Mass Spectrometry in accordance with with F.S. Rule 64ER20-39.

Batch Date: 12/11/24 14:01:55

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs

FloraCal Live Badder Rosin 1g - Apl and Bnanas (S)

Apl and Bnanas (S) Matrix: Derivative

Type: Live Badder

Certificate of Analysis

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Fmail: Julio Chavez@crescolabs.com Sample : DA41210014-013 Harvest/Lot ID: 6876660146217682

Sampled: 12/10/24 Ordered: 12/10/24

Batch#: 6876660146217682 Sample Size Received: 16 units Total Amount: 970 units Completed: 12/13/24 Expires: 12/13/25 Sample Method: SOP.T.20.010

Page 5 of 6

Microbial

DASSED

Analyte	LOD	Units	Result	Pass / Fail	Action Level	Analyte		LOD	Units	Result	Pass / Fail	Action Level
ASPERGILLUS TERREUS			Not Present	PASS		AFLATOXIN B2		0.00	ppm	ND	PASS	0.02
ASPERGILLUS NIGER			Not Present	PASS		AFLATOXIN B1		0.00	ppm	ND	PASS	0.02
ASPERGILLUS FUMIGATUS			Not Present	PASS		OCHRATOXIN A		0.00	ppm	ND	PASS	0.02
ASPERGILLUS FLAVUS			Not Present	PASS		AFLATOXIN G1		0.00	ppm	ND	PASS	0.02
SALMONELLA SPECIFIC GENE			Not Present	PASS		AFLATOXIN G2		0.00	ppm	ND	PASS	0.02
ECOLI SHIGELLA	10.00	CELL/a	Not Present	PASS PASS	100000	Analyzed by:	Weight:	Extraction dat			xtracted	by:
TOTAL YEAST AND MOLD	10.00	CFU/g	<10	PASS	100000	3621, 585, 1440	0.2305g	12/11/24 14:2	3:17	4	50,585	

Analyzed by: 4520, 4531, 585, 1440 Weight: **Extraction date:** Extracted by: 0.991g 12/11/24 10:43:08 4044,4520

Analysis Method: SOP.T.40.056C, SOP.T.40.058.FL, SOP.T.40.209.FL

Analytical Batch : DA081031MIC

Instrument Used: PathogenDx Scanner DA-111,Applied Biosystems
2720 Thermocycler DA-010,Fisher Scientific Isotemp Heat Block (55*C)
DA-020,Fisher Scientific Isotemp Heat Block (95*C) DA-049,Fisher Batch Date: 12/11/24

Scientific Isotemp Heat Block (55*C) DA-021

Analyzed Date: 12/12/24 12:37:42

Reagent: 111524.96; 111524.101; 120524.R12; 062624.19
Consumables: 7578001078

Pipette: N/A

Analyzed by:	Weight:	Extraction date:	Extracted by:
4520, 3390, 585, 1440	0.991a	12/11/24 10:43:08	4044.4520

Analysis Method: SOP.T.40.208 (Gainesville), SOP.T.40.209.FL

Analytical Batch : DA081032TYM

Instrument Used: Incubator (25*C) DA- 328 [calibrated with Batch Date: 12/11/24 08:20:27

Analyzed Date : 12/13/24 16:18:49

Dilution: 10

Reagent: 111524.96; 111524.101; 110724.R13

Consumables : N/A Pipette : N/A

Total yeast and mold testing is performed utilizing MPN and traditional culture based techniques in accordance with F.S. Rule 64ER20-39.

3	MyCotoxiiis			'	ras	JL
Analyte		LOD	Units	Result	Pass / Fail	Actio
AFLATOXIN B	2	0.00	ppm	ND	PASS	0.02
AFLATOXIN B	1	0.00	ppm	ND	PASS	0.02
OCHRATOXIN	Δ	0.00	nnm	ND	PASS	0.02

	•					Fail	Level	
	AFLATOXIN B2		0.00	ppm	ND	PASS	0.02	
	AFLATOXIN B1		0.00	ppm	ND	PASS	0.02	
	OCHRATOXIN A		0.00	ppm	ND	PASS	0.02	
	AFLATOXIN G1		0.00	ppm	ND	PASS	0.02	
	AFLATOXIN G2		0.00	ppm	ND	PASS	0.02	
Analyzed by: 3621, 585, 1440		Weight:	Extraction dat				tracted by:	
,	3021, 303, 1440	0.2305g	12/11/24 14:2	3:17	450,585			

Analysis Method: SOP.T.30.101.FL (Gainesville), SOP.T.40.101.FL (Gainesville), SOP.T.30.102.FL (Davie), SOP.T.40.102.FL (Davie)

Analytical Batch : DA081062MYC

Instrument Used : N/A

Batch Date: 12/11/24 10:00:43 **Analyzed Date:** 12/12/24 12:11:49

Dilution: 250

Reagent: 121024.R11; 081023.01

Consumables: 240321-634-A; 040724CH01; 326250IW

Pipette: N/A

Mycotoxins testing utilizing Liquid Chromatography with Triple-Quadrupole Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

Heavy Metals

PASSED

Metal 7		LOD	Units	Result	Pass / Fail	Action Level	
TOTAL CONTAMINANT LO	DAD METALS	0.08	ppm	ND	PASS	1.1	
ARSENIC		0.02	ppm	ND	PASS	0.2	
CADMIUM		0.02	ppm	ND	PASS	0.2	
MERCURY		0.02	ppm	ND	PASS	0.2	
LEAD		0.02	ppm	ND	PASS	0.5	
Analyzed by: 1022, 4056, 585, 1440	Weight: 0.2411g	Extractio 12/11/24	n date: 10:16:35		Extracte 4056	ed by:	

Analysis Method: SOP.T.30.082.FL, SOP.T.40.082.FL

Analytical Batch : DA081047HEA Instrument Used : DA-ICPMS-004

Batch Date: 12/11/24 09:22:29 Analyzed Date: 12/12/24 09:31:12

Dilution: 50

Reagent: 112524.R05; 112624.R32; 120924.R13; 120424.R01; 120924.R11; 120924.R12;

120324.07; 112624.R33

Consumables: 179436; 040724CH01; 210508058

Pipette: DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs

FloraCal Live Badder Rosin 1g - Apl and Bnanas (S)

Apl and Bnanas (S) Matrix: Derivative Type: Live Badder

Certificate of Analysis

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Fmail: Julio Chavez@crescolabs.com Sample : DA41210014-013 Harvest/Lot ID: 6876660146217682

Sampled: 12/10/24 Ordered: 12/10/24

Batch#: 6876660146217682 Sample Size Received: 16 units Total Amount: 970 units Completed: 12/13/24 Expires: 12/13/25 Sample Method: SOP.T.20.010

Page 6 of 6

Filth/Foreign **Material**

PASSED

Analyte LOD Units Result P/F **Action Level** Filth and Foreign Material 0.100 % ND PASS 1

Analyzed by: 1879, 585, 1440 Weight: Extraction date: Extracted by: 1g 12/11/24 10:29:01 1879

Analysis Method: SOP.T.40.090

Analytical Batch : DA081064FIL
Instrument Used : Filth/Foreign Material Microscope

Batch Date: 12/11/24 10:03:29

Analyzed Date: 12/11/24 10:39:43

Dilution: N/AReagent: N/A Consumables : N/A Pipette: N/A

Filth and foreign material inspection is performed by visual inspection utilizing naked eye and microscope technologies in accordance with F.S. Rule 64ER20-39.

Water Activity

Analyte	L	OD Units	Result	P/F	Action Level
Water Activity	(0.010 aw	0.508	PASS	0.85
Analyzed by:	Weight:	Extraction o			tracted by:

Analysis Method: SOP.T.40.019 Analytical Batch: DA081056WAT

Instrument Used : DA257 Rotronic HygroPalm

Batch Date: 12/11/24 09:45:35 Analyzed Date: 12/12/24 09:09:28

Dilution: N/A **Reagent**: 051624.02 Consumables : PS-14 Pipette: N/A

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ)

are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164