

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Kaycha Labs

Good News Brunch Cartridge 1g Brunch Matrix: Derivative Type: Distillate

PASSED

MISC.

Certificate of Analysis COMPLIANCE FOR RETAIL

Sample:DA40906011-006 Harvest/Lot ID: 1101 3428 6432 5591 Batch#: 1101 3428 6432 5591 Cultivation Facility: FL - Indiantown (3734) Processing Facility : FL - Indiantown (3734) Source Facility : FL - Indiantown (3734) Seed to Sale# 1101 3428 6432 5591 Batch Date: 08/20/24 Sample Size Received: 16 gram Total Amount: 851 units Retail Product Size: 1 gram Retail Serving Size: 1 gram Servings: 1 Ordered: 08/20/24 Sampled: 09/06/24 Completed: 09/10/24 Sampling Method: SOP.T.20.010

Pages 1 of 6

Sep 10, 2024 | Sunnyside 22205 Sw Martin Hwy indiantown, FL, 34956, US

SAFETY RESULTS

Pestici PASS] ides Hei	Hg avy Metals ASSED	Microbials PASSED	Mycotox PASSE		Residuals Solvents PASSED	Filth PASSED		Activity SSED	Moisture NOT TESTED	Terpenes TESTED
Ä	Cannal	pinoid								I	PASSED
	3 83	I THC B.967 THC/Container :		E	1.	al CBD 533% CBD/Container :			389	I Cannabinoids)
<i></i>	^{D9-тнс} 83.629	THCA 0.386	свр 1.533	CBDA ND	D8-ТНС ND	свд 2.745	CBGA ND	свн 0.658	тнсv 0.420	CBDV	свс 0.325
% mg/unit	836.29	3.86	15.33	ND	ND	27.45	ND	6.58	4.20	ND	3.25
LOD	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
102	%	%	%	%	%	%	%	%	%	%	%
Analyzed by: 3335, 1665, 585	5, 1440			Weight: 0.1091g		Extraction date: 09/09/24 11:57:57				tracted by: 665,3335	
Analytical Batch Instrument Use	d:SOP.T.40.031, S h:DA077807POT d:DA-LC-003 :09/09/24 12:28:34					Reviewed On : 09/ Batch Date : 09/08					
Consumables :	24.R05; 071624.04 947.109; 04311046 '9; DA-108; DA-078	5; 280670723; R1KB	14270								

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 54-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 09/10/24

Good News Brunch Cartridge 1g Brunch Matrix : Derivative Type: Distillate

PASSED

TESTED

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Julio.Chavez@crescolabs.com
 Sample : DA40906011-006

 Harvest/Lot ID: 1101 3428 6432
 S591

 Batch#: 1101 3428 6432
 Sample

 5591
 Total And

Sampled : 09/06/24 Ordered : 09/06/24 Sample Size Received :16 gram Total Amount :851 units Completed :09/10/24 Expires:09/10/25 Sample Method :SOP.T.20.010

Page 2 of 6

Ô

Te	rp	e	n	e	S

SABINER HYDRATE VALENCENE ALPHA-CEDRENE ALPHA-PHELLANDRENE ALPHA-TERPINENE CIS-NEROLIDOL GAMMA-TERPINENE TRANS-NEROLIDOL malyzad by: TRANS-VEROLIDOL Malysis Method : SOP.T.30.061A.F.L. SOP.T.40. malysis Method : SOP.T.30.061A.F.L. SOP.T.40. Method : SOP.T.50.061A.F.L. SOP.T.50. Method : SOP.T.50.061A.F.L. SOP.T.		09/0 Rev		5 Extracted 4451 7/0/24 09:54:30 7/724 09:52:43
ALPHA-CEDRENE ALPHA-TERPHELLANDRENE ALPHA-TERPINENE CIS-NEROLIDOL GAMMA-TERPINENE TRANS-NEROLIDOL AS1, 3605, 585, 1440 analytical Bath: 1007/75/17ER analytical Bath: 1007/75/17ER analytical Bath: 1007/75/17ER analytical Bath: 1007/75/17ER analytical Bath: 1007/75/17ER analytical Bath: 204/204/00/005/80 Nilution: 10 esgent: 022224.07 ansumables: 947.109; 240321-634.4; 28067(prest: 02.4065)	0.005 0.007 0.003 0.003 0.005 Weight: 0.2441g	ND ND ND ND ND Extra 09/0	ND ND ND ND ND ND ND ND ND ND ND ND ND N	6 4451
ALPHA-PHELLANDRENE ALPHA-TREPINENE CIS-NEROLIDOL GAMMA-TERPINENE 451, 3605, 585, 1440 inalysis Method : SOPT 30.061A.FL, SOPT.40. analysis Method : SOPT 30.061A.FL, SOPT.40. Inalysis Method : SOPT.40.70. Inalysis Method : SOPT.4	0.007 0.007 0.003 0.007 0.005 Weight: 0.2441g	ND ND ND ND Extra 09/0 Rev	ND ND ND ND ND nction date: 7/24 21:22:16	6 4451
ALPHA-TERPINENE CIS-NEROLIDOL GAMMA-TERPINENE TRANS-NEROLIDOL inalyzad by: additionalyzad by: additionalyzad by: additionalyzad by: bacharon bacharolic bacharolic bacharolic bacharolic matyream bacharolic bacharolic bacharolic bacharolic matyream bacharolic bacharolic bacharolic bacharolic bacharolic matyream bacharolic bacharo	0.007 0.003 0.007 0.005 Weight: 0.2441g 0.061A.FL	ND ND ND Extra 09/0	ND ND ND ND 7/24 21:22:16	6 4451
CIS-NEROLIDOL GAMMA-TERPINENE TRANS-NEROLIDOL malyteed by: 451, 3605, 585, 1440 malytis Method : SOP T.30.061A.F.L, SOP.T.40. malytis Method : SOP T.30.061A.F.L, SOP.T.40. malyted Batch : DAOT751TER malyted Batch : DAOT751TER malyted Date : 09/09/24 09:00:58 illution : 10 esgent : 0.22224.07 onsumables : 947.109; 240321-634.A; 28067(instance) : 240.512-634.A; 28067(0.003 0.007 0.005 Weight: 0.2441g 0.061A.FL	ND ND ND Extra 09/0	ND ND ND 7/24 21:22:16	6 4451
GAMMA-TERPINENE TRANS-NEROLIDOL malysis Method : SOPT 30:061A.FL, SOPT.40: malysis Method : SOPT 30:061A.FL, SOPT.40: Method : SOPT 30:061A.FL, SOPT.40:061A.FL, SOPT.40: Method : SOPT.30:061A.FL, SOPT.40:061A.FL, SOP	0.007 0.005 Weight: 0.2441g 0.061A.FL	ND ND Extra 09/0 Rev	ND ND 7/24 21:22:16	6 4451
TRANS-NEROLIDOL malyzed by: 451, 3605, 585, 1440 malysis Method : SOP.T.30.061A.FL, SOP.T.40. malysis Method : SOP.T.30.061A.FL, SOP.T.40. malyzed Date: 10.007/STSTER source in the second second second second second second second	0.005 Weight: 0.2441g	ND Extra 09/0 Rev	ND 7/24 21:22:16	6 4451
nalyzed by: 451,3605,585,1440 madytical SOPT 30.061A.FL,SOP.T.40. madytical Bath: 1DA077/SITER strument Udee'.D.ACGM5-008 madyzed Date: 09/09/24 09:00:58 Niution: 10 esgent: 022224.07 onsumables: 947.109;240321-634.A; 28067(ipette: 0.2A065	Weight: 0.2441g .061A.FL	Extra 09/0 Rev	ction date: 7/24 21:22:16	6 4451
451, 3605, 585, 1440 matylsia Mehdor SOP 30.061A.FL, SOP.T.40. matylsia Bathar : DA0777511TER internment Usida : DA0C/DK-5009 matyzed Date : 09/09/24 09:00:58 illution : 10 cegent : 02/2224.07 cnsumables : 947.109; 240321-634.4; 28067(instance) : Soprational Society : Society	0.2441g .061A.FL	09/0 Rev	7/24 21:22:16	6 4451
451, 3605, 585, 1440 matylsia Mehdor SOP 30.061A.FL, SOP.T.40. matylsia Bathar : DA0777511TER internment Usida : DA0C/DK-5009 matyzed Date : 09/09/24 09:00:58 illution : 10 cegent : 02/2224.07 cnsumables : 947.109; 240321-634.4; 28067(instance) : Soprational Society : Society	0.2441g .061A.FL	09/0 Rev	7/24 21:22:16	6 4451
unalytical Batch: DA077751TER nstrument Used: DA-GCMS-008 unalyzed Date: 09/09/24 09:00:58 Hiution: 10 leagent: 022224.07 inosumables: 947.109; 240321-634-A; 280670 lipette: DA-065				
nstrument Used : DA-GCMS-008 inalyzed Date : 09/09/24 09:00:58 jluiton : 10 leagent : 022224.07 ionsumables : 947.109; 240321-634-A; 280670 ipette : DA-065	'0723; CE0123			
nalyzed Date : 09/09/24 09:00:58 Milution : 10 leagent : 022224.07 ionsumables : 947.109; 240321-634-A; 280670 lipette : DA-065	'0723; CE0123	Bat	h Date : 09/0	//24-09:52:43
vilution : 10 leagent : 022224.07 consumables : 947.109; 240321-634-A; 28067(vipette : DA-065	0723; CE0123			
Leagent : 022224.07 Consumables : 947.109; 240321-634-A; 280670 Pipette : DA-065	0723; CE0123			
ipette : DA-065	0723; CE0123			
ernenoid testing is performed utilizing Gas Chromate				
ereating as percented denting day enrolling	tography Mass Spectr	ometry. For a	I Flower sample	es, the Total Terpenes % is dry-weight correc

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LDD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 09/10/24

. Good News Brunch Cartridge 1g Brunch Matrix : Derivative Type: Distillate

PASSED

PASSED

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA40906011-006 Harvest/Lot ID: 1101 3428 6432 5591 Batch#: 1101 3428 6432 5591

Sampled : 09/06/24 Ordered : 09/06/24 Sample Size Received : 16 gram Total Amount : 851 units Completed : 09/10/24 Expires: 09/10/25 Sample Method : SOP.T.20.010

Page 3 of 6

ष्ट्
0

Pesticides

Pesticide	LOD	Units	Action Level	Pass/Fail	Result	Pesticide		LOD	Units	Action Level	Pass/Fail	Result
TOTAL CONTAMINANT LOAD (PESTICIDES)	0.010	ppm	5	PASS	ND	OXAMYL		0.010	ppm	0.5	PASS	ND
TOTAL DIMETHOMORPH	0.010		0.2	PASS	ND	PACLOBUTRAZOL		0.010	ppm	0.1	PASS	ND
TOTAL PERMETHRIN	0.010	ppm	0.1	PASS	ND	PHOSMET		0.010		0.1	PASS	ND
OTAL PYRETHRINS	0.010	ppm	0.5	PASS	ND	PIPERONYL BUTOXIDE		0.010		3	PASS	ND
TOTAL SPINETORAM	0.010	ppm	0.2	PASS	ND			0.010		0.1	PASS	ND
OTAL SPINOSAD	0.010	ppm	0.1	PASS	ND	PRALLETHRIN						
ABAMECTIN B1A	0.010	ppm	0.1	PASS	ND	PROPICONAZOLE		0.010		0.1	PASS	ND
ACEPHATE	0.010	ppm	0.1	PASS	ND	PROPOXUR		0.010		0.1	PASS	ND
ACEQUINOCYL	0.010	ppm	0.1	PASS	ND	PYRIDABEN		0.010	ppm	0.2	PASS	ND
ACETAMIPRID	0.010	ppm	0.1	PASS	ND	SPIROMESIFEN		0.010	ppm	0.1	PASS	ND
ALDICARB	0.010	ppm	0.1	PASS	ND	SPIROTETRAMAT		0.010	ppm	0.1	PASS	ND
AZOXYSTROBIN	0.010	ppm	0.1	PASS	ND	SPIROXAMINE		0.010	ppm	0.1	PASS	ND
BIFENAZATE	0.010	ppm	0.1	PASS	ND	TEBUCONAZOLE		0.010	ppm	0.1	PASS	ND
BIFENTHRIN	0.010	ppm	0.1	PASS	ND	THIACLOPRID		0.010		0.1	PASS	ND
BOSCALID	0.010	ppm	0.1	PASS	ND			0.010		0.5	PASS	ND
CARBARYL	0.010	ppm	0.5	PASS	ND	THIAMETHOXAM						
CARBOFURAN	0.010	ppm	0.1	PASS	ND	TRIFLOXYSTROBIN		0.010		0.1	PASS	ND
CHLORANTRANILIPROLE	0.010	ppm	1	PASS	ND	PENTACHLORONITROBENZENE	(PCNB) *	0.010		0.15	PASS	ND
CHLORMEQUAT CHLORIDE	0.010	ppm	1	PASS	ND	PARATHION-METHYL *		0.010	PPM	0.1	PASS	ND
CHLORPYRIFOS	0.010	ppm	0.1	PASS	ND	CAPTAN *		0.070	PPM	0.7	PASS	ND
LOFENTEZINE	0.010	ppm	0.2	PASS	ND	CHLORDANE *		0.010	PPM	0.1	PASS	ND
OUMAPHOS	0.010	ppm	0.1	PASS	ND	CHLORFENAPYR *		0.010	PPM	0.1	PASS	ND
DAMINOZIDE	0.010	ppm	0.1	PASS	ND	CYFLUTHRIN *		0.050	PPM	0.5	PASS	ND
IAZINON	0.010	ppm	0.1	PASS	ND	CYPERMETHRIN *		0.050		0.5	PASS	ND
DICHLORVOS	0.010	ppm	0.1	PASS	ND					0.5		
DIMETHOATE	0.010	ppm	0.1	PASS	ND	Analyzed by: 3379, 585, 1440	Weight: 0.2613q	Extracti	on date: 11:13:14		Extracted b 4640.3379	iy:
THOPROPHOS	0.010	ppm	0.1	PASS	ND	Analysis Method :SOP.T.30.101.				SOP T 40 101		1
TOFENPROX	0.010	ppm	0.1	PASS	ND	SOP.T.40.102.FL (Davie)	i L (Gamesvine	, 501.1.50.10	Z.I L (Davie),	501.1.40.101	.i L (Gainesville	h
TOXAZOLE	0.010	ppm	0.1	PASS	ND	Analytical Batch : DA077766PES			Reviewed O	n:09/10/241	L9:59:17	
ENHEXAMID	0.010	ppm	0.1	PASS	ND	Instrument Used : DA-LCMS-003			Batch Date	:09/07/24 11	:57:30	
ENOXYCARB	0.010	ppm	0.1	PASS	ND	Analyzed Date :09/09/24 14:56:	01					
ENPYROXIMATE	0.010	ppm	0.1	PASS	ND	Dilution: 250						
IPRONIL	0.010	ppm	0.1	PASS	ND	Reagent : 090324.R02; 090624.I Consumables : 326250IW	R04; 090524.R:	L4; 082924.R2	8;082724.R1	5; 090424.R2	5; 081023.01	
LONICAMID	0.010	ppm	0.1	PASS	ND	Pipette : DA-093; DA-094; DA-21	0					
LUDIOXONIL	0.010	ppm	0.1	PASS	ND	Testing for agricultural agents is pe		a Liquid Chron	natography Tri	nle-Ouadruno	o Mass Sportror	netry in
IEXYTHIAZOX	0.010	ppm	0.1	PASS	ND	accordance with F.S. Rule 64ER20-		ig Eigene chron	lacography in	pic-Quuurupo	ie Muss spectrol	neary in
MAZALIL	0.010	ppm	0.1	PASS	ND	Analyzed by:	Weight:	Extractio	n date:		Extracted b	v:
MIDACLOPRID	0.010	ppm	0.4	PASS	ND		0.2613g	09/08/24	11:13:14		4640,3379	, ,
RESOXIM-METHYL	0.010	ppm	0.1	PASS	ND	Analysis Method : SOP.T.30.151.	FL (Gainesville), SOP.T.30.15	1A.FL (Davie)	, SOP.T.40.15	1.FL	
ALATHION	0.010		0.2	PASS	ND	Analytical Batch : DA077768VOL			eviewed On :			
IETALAXYL	0.010		0.1	PASS	ND	Instrument Used : DA-GCMS-010		Ba	atch Date : 09	/0//24 12:02	:48	
METHIOCARB	0.010		0.1	PASS	ND	Analyzed Date :09/09/24 17:21:	22					
AETHOMYL	0.010		0.1	PASS	ND	Dilution : 250 Reagent : 090524.R14: 081023.0	1.000224.00					
IEVINPHOS	0.010		0.1	PASS	ND	Consumables : 326250IW; 1472		r, 090324.R08				
MYCLOBUTANIL	0.010		0.1	PASS	ND	Pipette : DA-080; DA-146; DA-21						
NALED	0.010		0.25	PASS	ND	Testing for agricultural agents is pe	erformed utilizir	ig Gas Chroma	tography Triple	e-Quadrupole	Mass Spectrome	etry in
						accordance with F.S. Rule 64ER20-		-				-

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature

09/10/24

Page 4 of 6

Good News Brunch Cartridge 1g Brunch Matrix : Derivative Type: Distillate

PASSED

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Julio.Chavez@crescolabs.com
 Sample : DA40906011-006

 Harvest/Lot ID: 1101 3428 6432 5591

 Batch#: 1101 3428 6432
 Sample

 5591
 Total Ar

 Sampled: 09/06/24
 Complet

 Ordered: 09/06/24
 Sample

3 6432 5591 Sample Size Received : 16 gram Total Amount : 851 units Completed : 09/10/24 Expires: 09/10/25 Sample Method : SOP.T.20.010

Residual Solvents

Solvents	LOD	Units	Action Level	Pass/Fail	Result
1,1-DICHLOROETHENE	0.800	ppm	8	PASS	ND
1,2-DICHLOROETHANE	0.200	ppm	2	PASS	ND
2-PROPANOL	50.000	ppm	500	PASS	ND
ACETONE	75.000	ppm	750	PASS	ND
ACETONITRILE	6.000	ppm	60	PASS	ND
BENZENE	0.100	ppm	1	PASS	ND
BUTANES (N-BUTANE)	500.000	ppm	5000	PASS	ND
CHLOROFORM	0.200	ppm	2	PASS	ND
DICHLOROMETHANE	12.500	ppm	125	PASS	ND
ETHANOL	500.000	ppm	5000	PASS	ND
ETHYL ACETATE	40.000	ppm	400	PASS	ND
ETHYL ETHER	50.000	ppm	500	PASS	ND
ETHYLENE OXIDE	0.500	ppm	5	PASS	ND
HEPTANE	500.000	ppm	5000	PASS	ND
METHANOL	25.000	ppm	250	PASS	ND
N-HEXANE	25.000	ppm	250	PASS	ND
PENTANES (N-PENTANE)	75.000	ppm	750	PASS	ND
PROPANE	500.000	ppm	5000	PASS	ND
TOLUENE	15.000	ppm	150	PASS	ND
TOTAL XYLENES	15.000	ppm	150	PASS	ND
TRICHLOROETHYLENE	2.500	ppm	25	PASS	ND
Analyzed by: 850, 585, 1440	Weight: 0.02196g	Extraction date: 09/09/24 11:18:0	4		xtracted by: 50
Analysis Method : SOP.T.40.041.FL Analytical Batch : DA077778SOL Instrument Used : DA-GCMS-003 Analyzed Date : 09/09/24 11:28:55	On : 09/10/24 08:54:23 te : 09/07/24 13:14:35				

Dilution : 1 Reagent : 030420.10 Consumables : 430274; 306143

Pipette : DA-309 25 uL Syringe 35028

Residual solvents analysis is performed utilizing Gas Chromatography Mass Spectrometry in accordance with with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 09/10/24

PASSED

Good News Brunch Cartridge 1g Brunch Matrix : Derivative Type: Distillate

PASSED

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Julio.Chavez@crescolabs.com Sample : DA40906011-006 Harvest/Lot ID: 1101 3428 6432 5591 Batch#: 1101 3428 6432 Sample 5591 Total Ar

Sampled : 09/06/24 Ordered : 09/06/24 Sample Size Received :16 gram Total Amount : 851 units Completed : 09/10/24 Expires: 09/10/25 Sample Method : SOP.T.20.010

Page 5 of 6

Ç,	Microbia				PAS	SED	လို့	Му	cotox	ins			PAS	SED
Analyte		LOD	Units	Result	Pass / Fail	Action Level	Analyte			LOD	Units	Result	Pass / Fail	Action Level
ASPERGILLUS	5 TERREUS			Not Present	PASS		AFLATOXIN	B2		0.0	0 ppm	ND	PASS	0.02
ASPERGILLUS	5 NIGER			Not Present	PASS		AFLATOXIN	B1		0.0)0 ppm	ND	PASS	0.02
ASPERGILLUS	5 FUMIGATUS			Not Present	PASS		OCHRATOXII	NA		0.0	0 ppm	ND	PASS	0.02
ASPERGILLUS	5 FLAVUS			Not Present	PASS		AFLATOXIN	G1		0.0	0 ppm	ND	PASS	0.02
	SPECIFIC GENE			Not Present	PASS		AFLATOXIN	G2		0.0	00 ppm	ND	PASS	0.02
ECOLI SHIGEL TOTAL YEAST		10.00	CFU/g	Not Present <10	PASS PASS	100000	Analyzed by: 3379, 585, 144	10	Weight: 0.2613g	Extraction 09/08/24 1			xtracted I 640,3379	
Analyzed by: 4531, 3390, 585	Weig 5, 1440 0.814		Extraction da 09/07/24 11:		Extracte 4520	ed by:	Analysis Metho SOP.T.30.102.				.T.40.101.H	L (Gainesv	rille),	
	d:SOP.T.40.056C,SOP h:DA077741MIC	.T.40.05	8.FL, SOP.T.4	Re	viewed On :53:24	:09/10/24	Analytical Bate Instrument Use Analyzed Date	ch:DA0777 ed:N/A	67MYC	Rev		09/10/24 1 9/07/24 12:		
2720 Thermocy DA-020,Fisher S Scientific Isoter Heat Block (55* DA-367	d : PathogenDx Scanne vcler DA-013,Fisher Scie Scientific Isotemp Heat np Heat Block (55*C) D *C) DA-366,Fisher Scien	entific Iso Block (9 A-021,Fi	otemp Heat E 5*C) DA-049, isher Scientifi	Block (55*C)08 ,Fisher ic Isotemp	tch Date : (:42:39		Dilution : 250 Reagent : 0903 081023.01 Consumables : Pipette : DA-09	326250IW 93; DA-094	; DA-219					
Analyzed Date :	: 09/08/24 10:02:52						 Mycotoxins test accordance wit 		Liquid Chromato 4ER20-39.	ography with In	ple-Quadrup	ole Mass Sp	ectrometry	In
Dilution : 10 Reagent : 0822 Consumables : Pipette : N/A Analyzed by:	24.11; 082224.34; 082 7576001013 Weight:		; 042924.38 action date:		Extracted	by	Hg	Неа	avy M	etals			PAS	SED
4531, 585, 1440	0 0.814g	09/0	7/24 11:14:0		4520	by.	Metal			LOD	Units	Result	Pass / Fail	Action Level
	d : SOP.T.40.208 (Gaine h : DA077743TYM	sville), S	50P.T.40.209	.FL Reviewed O	n 00/10/2	1 00.54.0	TOTAL CONT		LOAD META	LS 0.0	mqq 80	ND	PASS	1.1
	d : Incubator (25*C) DA	- 328 [ca	alibrated with				ARSENIC			0.0		ND	PASS	0.2
DA-382]							CADMIUM			0.0)2 ppm	ND	PASS	0.2
-	: 09/07/24 16:32:55						MERCURY			0.0)2 ppm	ND	PASS	0.2
Dilution: 10							LEAD			0.0)2 ppm	ND	PASS	0.5
Reagent : 0822 Consumables : Pipette : N/A	24.11; 082224.34; 0820 N/A	J24.R18					Analyzed by: 1022, 585, 144	10	Weight: 0.2667g	Extraction 0 09/08/24 1			xtracted 022,4571	
Total yeast and n	nold testing is performed u F.S. Rule 64ER20-39.	tilizing M	PN and traditio	nal culture base	d techniques	s in	Analysis Metho Analytical Bato Instrument Us Analyzed Date	ch : DA0777 ed : DA-ICP	755HEA MS-004	Revie		9/10/24 13 07/24 10:5		
							Dilution : 50 Reagent : 0823 090624.R21 Consumables :				0324.R21;	090324.R2	2; 06172	4.01;

Consumables : 179436; 021824CH01; 210508058

Pipette : DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 09/10/24

Good News Brunch Cartridge 1g Brunch Matrix : Derivative Type: Distillate

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Julio.Chavez@crescolabs.com Sample : DA40906011-006 Harvest/Lot ID: 1101 3428 6432 5591 Batch# : 1101 3428 6432 5591 Sample : 09/06/24 Complex Sample : 09/06/24 Complex

Ordered : 09/06/24

 Analysis Method : SOP.T.40.090

 Analysis Method : DA077819FIL

 Instrument Used : Filth/Foreign Material Microscope

 Analyzed Date : 09/08/24 23:13:44

 Dilution : N/A

 Reagent : N/A

 Pipette : N/A

 Filth and foreign material inspection is performed by visual inspection utilizing naked eye and microscope

 Itomologies in accordance with F.S. Rule 64ER20-39.

 PASSEED

Analyte Water Activity		LOD 0.010	Units aw	Result 0.609	P/F PASS	Action Level 0.85
Analyzed by: 4571, 585, 1440	Weight: 0.0999g		traction d /09/24 07			tracted by: 71
Analysis Method : SOP Analytical Batch : DA0 Instrument Used : DA2 Analyzed Date : 09/09	77787WAT 257 Rotronic Hyg	groPaln	٦	Reviewed Or Batch Date :		
Dilution : N/A Reagent : 080624.18 Consumables : PS-14 Pipette : N/A						

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 09/10/24

PASSED

Page 6 of 6