

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

SUNNYSIDE

1题

Kaycha Labs

Supply Pre-Roll 1g - Rnbw Shrbt (I) Rainbow Sherbert Matrix: Flower Type: Preroll

PASSED

MISC.

Certificate of Analysis COMPLIANCE FOR RETAIL

Sample:DA40830008-013 Harvest/Lot ID: 1101 3428 6432 7114 Batch#: 1101 3428 6432 7114 Cultivation Facility: FL - Indiantown (3734) Processing Facility : FL - Indiantown (3734) Source Facility : FL - Indiantown (3734) Seed to Sale# 1101 3428 6432 7239 Batch Date: 08/20/24 Sample Size Received: 26 gram Total Amount: 1500 units Retail Product Size: 1 gram Retail Serving Size: 1 gram Servings: 1 Ordered: 08/22/24 Sampled: 08/30/24 Completed: 09/04/24 Sampling Method: SOP.T.20.010

Pages 1 of 5

Sep 04, 2024 | Sunnyside

indiantown, FL, 34956, US

SAFETY RESULTS

В Полика		Hg	(Et.	ູ	ؿ	Ä		(\bigcirc		Ô
Pesticio PASS		avy Metals PASSED	Microbials PASSED	Mycot PAS	SED	Residuals Solvents NOT TESTED	Filth PASSED		r Activity SSED	Moisture PASSED	Terpenes TESTED
Ä	Canna	binoid									PASSED
	3 23	I THC 3.267 THC/Container	, .		3 (otal CBD 1.025% tal CBD/Container			327	Cannabinoids	0
%	D9-ТНС 1.216	тнса 25.144	CBD ND	CBDA 0.029	d8-thc	свс 0.094	CBGA 0.566	сви 0.014	THCV ND	CBDV	свс 0.090
mg/unit	12.16	251.44	ND	0.29	ND	0.94	5.66	0.14	ND	ND	0.90
LOD	0.001	0.001		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	%	%	%	%	%	%	%	%	%	%	%
Analyzed by: 3335, 1665, 585	i, 1440			Weight: 0.2145g		Extraction date: 09/03/24 08:49:3	31			Extracted by: 3335	
Analytical Batch Instrument Used	a: SOP.T.40.031, 9 : DA077548POT d: DA-LC-001 09/03/24 08:49:3					Reviewed On : 09 Batch Date : 09/0	9/04/24 10:12:55 01/24 09:14:39				
Consumables : 9	24.R04; 081324.1 947.109; 021824C 9; DA-108; DA-07;	H01; CE0123; R1KB1	14270								

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 09/04/24

Supply Pre-Roll 1g - Rnbw Shrbt (I) Rainbow Sherbert Matrix : Flower Type: Preroll

PASSED

TESTED

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA40830008-013 Harvest/Lot ID: 1101 3428 6432 7114 Batch#: 1101 3428 6432 7114 Sampled : 08/30/24

Ordered : 08/30/24

Sample Size Received : 26 gram Total Amount : 1500 units Completed : 09/04/24 Expires: 09/04/25 Sample Method : SOP.T.20.010

Page 2 of 5

Te	rp	e	n	e	S

LOD (%)	m	g/unit	%	Result (%)
0.007	ND	D	ND	
0.005	ND	D	ND	
0.007	ND	D	ND	
0.007	ND	D	ND	
0.007	ND	D	ND	
0.007	ND	D	ND	
0.003	ND	D	ND	
0.007	ND	D	ND	
Weight:		Extrac	tion date:	Extracted by:
1.0136g			/24 15:16:1	
51A.FL, SOP.T.40.061A.FL				
ER				9/04/24 10:12:59
04 .6:34		Batch	1 Date : 08/3	31/24 09:53:16
21-634-A; 280670723; CE0123				
ilizing Gas Chromatography Mass Spe	ctrometry	y. For all I	Flower samp	les, the Total Terpenes % is dry-weight corrected.

Total (%)

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 09/04/24

Supply Pre-Roll 1g - Rnbw Shrbt (I) Rainbow Sherbert Matrix : Flower Type: Preroll

PASSED

PASSED

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA40830008-013 Harvest/Lot ID: 1101 3428 6432 7114 Batch# : 1101 3428 6432 Sample 7114 Total An

Sampled : 08/30/24 Ordered : 08/30/24 Sample Size Received : 26 gram Total Amount : 1500 units Completed : 09/04/24 Expires: 09/04/25 Sample Method : SOP.T.20.010

Page 3 of 5

В С

Pesticides

Pesticide	LOD	Units	Action	Pass/Fail	Result	Pesticide	LOD	Units	Action	Pass/Fail	Result
TOTAL CONTAMINANT LOAD (PESTICIDES)	0.010	maa	Level 5	PASS	ND	OXAMYL	0.010	maa	Level 0.5	PASS	ND
TOTAL DIMETHOMORPH		ppm	0.2	PASS	ND			ppm	0.1	PASS	ND
TOTAL PERMETHRIN		maa	0.1	PASS	ND	PACLOBUTRAZOL		1° P			ND
TOTAL PYRETHRINS	0.010	ppm	0.5	PASS	ND	PHOSMET		ppm	0.1	PASS	
TOTAL SPINETORAM		ppm	0.2	PASS	ND	PIPERONYL BUTOXIDE		ppm	3	PASS	ND
TOTAL SPINOSAD		ppm	0.1	PASS	ND	PRALLETHRIN	0.010	ppm	0.1	PASS	ND
ABAMECTIN B1A	0.010	ppm	0.1	PASS	ND	PROPICONAZOLE	0.010	ppm	0.1	PASS	ND
ACEPHATE		ppm	0.1	PASS	ND	PROPOXUR	0.010	ppm	0.1	PASS	ND
ACEOUINOCYL	0.010	ppm	0.1	PASS	ND	PYRIDABEN	0.010	ppm	0.2	PASS	ND
ACETAMIPRID	0.010	ppm	0.1	PASS	ND	SPIROMESIFEN	0.010	ppm	0.1	PASS	ND
ALDICARB	0.010	ppm	0.1	PASS	ND	SPIROTETRAMAT	0.010	ppm	0.1	PASS	ND
AZOXYSTROBIN	0.010	ppm	0.1	PASS	ND	SPIROXAMINE		ppm	0.1	PASS	ND
BIFENAZATE	0.010	ppm	0.1	PASS	ND	TEBUCONAZOLE		ppm	0.1	PASS	ND
BIFENTHRIN	0.010	ppm	0.1	PASS	ND			ppm	0.1	PASS	ND
BOSCALID	0.010	ppm	0.1	PASS	ND	THIACLOPRID		ppm	0.5	PASS	ND
CARBARYL	0.010	ppm	0.5	PASS	ND	THIAMETHOXAM					
CARBOFURAN	0.010	ppm	0.1	PASS	ND	TRIFLOXYSTROBIN		ppm	0.1	PASS	ND
CHLORANTRANILIPROLE	0.010	ppm	1	PASS	ND	PENTACHLORONITROBENZENE (PCNB) *		PPM	0.15	PASS	ND
CHLORMEQUAT CHLORIDE	0.010	ppm	1	PASS	ND	PARATHION-METHYL *	0.010		0.1	PASS	ND
CHLORPYRIFOS	0.010	ppm	0.1	PASS	ND	CAPTAN *	0.070	PPM	0.7	PASS	ND
CLOFENTEZINE	0.010	ppm	0.2	PASS	ND	CHLORDANE *	0.010	PPM	0.1	PASS	ND
COUMAPHOS	0.010	ppm	0.1	PASS	ND	CHLORFENAPYR *	0.010	PPM	0.1	PASS	ND
DAMINOZIDE	0.010	ppm	0.1	PASS	ND	CYFLUTHRIN *	0.050	PPM	0.5	PASS	ND
DIAZINON	0.010	ppm	0.1	PASS	ND	CYPERMETHRIN *	0.050	PPM	0.5	PASS	ND
DICHLORVOS		ppm	0.1	PASS	ND	Analyzed by: Weight:	Extrac	tion date:		Extracted	1 by:
DIMETHOATE		ppm	0.1	PASS	ND	3621, 585, 1440 0.9848q		24 14:46:06		3621	
ETHOPROPHOS		ppm	0.1	PASS	ND	Analysis Method : SOP.T.30.101.FL (Gainesville)	, SOP.T.30.10	2.FL (Davie),	SOP.T.40.101.	FL (Gainesville)),
ETOFENPROX		ppm	0.1	PASS	ND	SOP.T.40.102.FL (Davie)					
ETOXAZOLE		ppm	0.1	PASS	ND	Analytical Batch : DA077535PES			n:09/04/241		
FENHEXAMID		ppm	0.1	PASS	ND	Instrument Used :DA-LCMS-003 (PES) Analyzed Date :09/03/24 14:52:36		Batch Date	:08/31/24 14:	48:32	
FENOXYCARB		ppm	0.1	PASS	ND	Dilution : 250					
FENPYROXIMATE		ppm	0.1	PASS	ND	Reagent : 082624.R03: 082924.R04: 082924.R0	3: 082924.R2	28: 082724.R1	5: 082924.R0	1:081023.01	
FIPRONIL		ppm	0.1	PASS	ND	Consumables : 326250IW					
FLONICAMID		ppm	0.1	PASS	ND	Pipette : DA-093; DA-094; DA-219					
FLUDIOXONIL		ppm	0.1	PASS	ND	Testing for agricultural agents is performed utilizing	g Liquid Chror	natography Tri	ple-Quadrupole	e Mass Spectron	netry in
HEXYTHIAZOX		ppm	0.1	PASS	ND	accordance with F.S. Rule 64ER20-39.					
IMAZALIL		ppm	0.1	PASS	ND ND	Analyzed by: Weight: 450, 585, 1440 0.9848g		ion date: 4 14:46:06		Extracted 3621	by:
IMIDACLOPRID		ppm	0.4	PASS	ND	Analysis Method :SOP.T.30.151.FL (Gainesville)			SOR T 40 15		
KRESOXIM-METHYL		ppm	0.1	PASS	ND	Analytical Batch : DA077537VOL			09/04/24 13:5		
MALATHION		ppm ppm	0.2	PASS	ND	Instrument Used : DA-GCMS-001			8/31/24 14:50:		
METALAXYL METHIOCARB		ppm	0.1	PASS	ND	Analyzed Date :09/03/24 15:04:52					
METHIOCARB		ppm	0.1	PASS	ND	Dilution : 250					
METHOMYL MEVINPHOS		ppm	0.1	PASS	ND	Reagent: 082924.R03; 081023.01; 081524.R31 Consumables: 326250IW: 14725401	; 081524.R32				
MYCLOBUTANIL		ppm	0.1	PASS	ND	Pipette : DA-080: DA-146: DA-218					
NALED		mag	0.25	PASS	ND	Testing for agricultural agents is performed utilizing	1 Gas Chroma	tography Triple	e-Quadrupole N	lass Spectrome	try in
MALED	0.010	Phili	0.20		ND	accordance with F.S. Rule 64ER20-39.	, cas ciri Jilla	cography rithi	c quurupule i	isso opeen office	

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Sen Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Supply Pre-Roll 1g - Rnbw Shrbt (I) Rainbow Sherbert Matrix : Flower Type: Preroll

PASSED

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA40830008-013 Harvest/Lot ID: 1101 3428 6432 7114 Batch# : 1101 3428 6432 Sample 7114 Total An

Sampled : 08/30/24 Ordered : 08/30/24 Sample Size Received : 26 gram Total Amount : 1500 units Completed : 09/04/24 Expires: 09/04/25 Sample Method : SOP.T.20.010

	Pa	ge	4	of	-
--	----	----	---	----	---

🔥 Micı	obial			PAS	SED	လှိုး	Му	cotox	ins			PAS	SED
Analyte	LOI	O Units	Result	Pass / Fail	Action Level	Analyte			LOD	Units	Result	Pass / Fail	Action Level
ASPERGILLUS TERREUS			Not Present	PASS		AFLATOXIN	B2		0.00	ppm	ND	PASS	0.02
ASPERGILLUS NIGER			Not Present	PASS		AFLATOXIN	B1		0.00	ppm	ND	PASS	0.02
ASPERGILLUS FUMIGAT	US		Not Present	PASS		OCHRATOXI	NA		0.00	ppm	ND	PASS	0.02
ASPERGILLUS FLAVUS			Not Present	PASS		AFLATOXIN	G1		0.00	ppm	ND	PASS	0.02
SALMONELLA SPECIFIC	GENE		Not Present	PASS		AFLATOXIN	G2		0.00	ppm	ND	PASS	0.02
ECOLI SHIGELLA			Not Present	PASS		Analyzed by:		Weight:	Extraction da	***		Extracted	l by
TOTAL YEAST AND MOL	D 10.0	0 CFU/g	<10	PASS	100000	3621, 585, 144	10	0.9848g	09/03/24 14:			3621	i by:
Analyzed by: 1520, 4351, 585, 1440	Weight: 1.063g	Extraction 08/31/24 1	1:53:40	Extracte 4520	ed by:		FL (Davie),	SOP.T.40.102.			. (Gainesv) 9/04/24 1		
Analysis Method : SOP.T.40 Analytical Batch : DA07749		058.FL, SOP.T	Rev	viewed On 28:23	:09/04/24	Instrument Us Analyzed Date	ed:N/A				/31/24 14:		
DA-020,Fisher Scientific Iso Scientific Isotemp Heat Blo Heat Block (55*C) DA-366, DA-367	ck (55*C) DA-021 Fisher Scientific Is	Fisher Scient	ific Isotemp			081023.01 Consumables : Pipette : DA-0	93; DA-094	; DA-219	graphy with Triple	Quadrupo	la Macc Cry	octrometry	in
Analyzed Date : 08/31/24 1	6:28:50					 accordance wit 			grapny with Triple	-Quadrupo	ie Mass Spe	ectrometry	In
Dilution : 10 Reagent : 082224.09; 0822 Consumables : 757500100 Pipette : N/A		3; 082024.R19	9; 030724.31			Hg	Неа	avy Me	etals			PAS	SEC
Analyzed by: 4044, 4531, 585, 1440	Weight: 1.063g	Extraction 08/31/24 1		Extracte 4520	ed by:	Metal			LOD	Units	Result	Pass / Fail	Action Level
Analysis Method : SOP.T.40		, SOP.T.40.20				TOTAL CONT		LOAD METAL	L S 0.08	ppm	ND	PASS	1.1
nalytical Batch : DA07749 nstrument Used : Incubato		[colibrated wi	Reviewed O			ARSENIC	APIINANI	LOAD METAL	0.02	ppm	ND	PASS	0.2
A-382]	I (23°C) DA- 320	[calibrated wi	III Batch Date :	00/31/24	09.00.50	CADMIUM			0.02	ppm	ND	PASS	0.2
nalyzed Date : 08/31/24 1	6:27:39					MERCURY			0.02	ppm	ND	PASS	0.2
ilution : 10						LEAD			0.02	ppm	ND	PASS	0.5
eagent : 082224.09; 0822 onsumables : N/A ipette : N/A	24.12; 082224.38	3; 082024.R18	3			Analyzed by: 1022, 585, 144	10	Weight: 0.2729g	Extraction dat 08/31/24 15:3	e:	E	xtracted I 022,1879	by:
Total yeast and mold testing is accordance with F.S. Rule 64E		MPN and tradit	ional culture based	l techniques	s in	Analysis Metho Analytical Bato Instrument Us Analyzed Date	:h : DA077! ed : DA-ICP	MS-004	Reviewe		/04/24 12: 1/24 10:1:		
						Dilution : 50 Reagent : 082 082824.R21 Consumables :			2324.R03; 0826	24.R04; ()82624.R0	5; 06172	4.01;

Consumables : 179436; 021824CH01; 210508058

Pipette : DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 09/04/24

Supply Pre-Roll 1g - Rnbw Shrbt (I) Rainbow Sherbert Matrix : Flower Type: Preroll

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Julio Chavez@crescolabs.com Sample : DA40830008-013 Harvest/Lot ID: 1101 3428 6432 7114 Batch#: 1101 3428 6432 7114

Sampled : 08/30/24 Ordered : 08/30/24 Sample Size Received : 26 gram Total Amount : 1500 units Completed : 09/04/24 Expires: 09/04/25 Sample Method : SOP.T.20.010

Filth/Foreign **Material**

PASSED

Action Level

PASSED

Page 5 of 5

Analyte Filth and Foreig	n Material	LOD 0.100	Units %	Result ND	P/F PASS	Action Level	Analyte Moisture Content		LOD 1.00	Units %	Result 12.9		P/F PASS	Action Le 15
Analyzed by: 1879, 585, 1440	Weight: 1g		raction da 01/24 20:!			xtracted by: 879	Analyzed by: We 4512, 585, 1440 0.5	eight: 5g		traction da			Ext 451	racted by: 2
Analysis Method : SOP.T.40.090 Analytical Batch : DA077558FIL Instrument Used : Filth/Foreign Material Microscope Analyzed Date : 09/01/24 20:54:27							Analysis Method : SOP.T.40.021 Analytical Batch : DA077519MC Instrument Used : DA-003 Mois	OI sture An			oisture	09:4 Bate	3:40 b Date : 0	: 09/04/24 8/31/24
Dilution : N/A Reagent : N/A Consumables : N/A							Analyzer, DA-263 Moisture Anal Analyser, DA-385 Moisture Anal Analyzed Date : 09/01/24 13:59	lyzer	A-264	Moisture		11:4	12:56	
	terial inspection is pe rdance with F.S. Rule			spection utilizi	ng naked e	eye and microscope	Dilution : N/A Reagent : 092520.50; 020124.0 Consumables : N/A Pipette : DA-066	02						
()	Water A	ctiv	ity		PA	SSED	Moisture Content analysis utilizing	loss-on-	drying	technology i	n accordan	ce w	ith F.S. Rule	64ER20-39.
Analyte Water Activity		LOD 0.010	Units aw	Result 0.522	P/F PASS	Action Level								

Analyte Water Activity		LODUnitsResult0.010aw0.5			P/F PASS	Action Level 0.65		
Analyzed by: 4512, 585, 1440	Weight: 0.76g		traction d /01/24 14		Extracted by: 4512			
Analysis Method : SOP Analytical Batch : DAO Instrument Used : DA- Analyzed Date : 09/01	77520WAT 028 Rotronic Hy	/gropal	m	Reviewed Or Batch Date :				
Dilution : N/A Reagent : 080624.18 Consumables : PS-14 Pipette : N/A								

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 09/04/24