

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Kaycha Labs

Cresco Liquid Live Resin Cartridge 500mg - White Trffl Mnts (I)

White Truffle Mints Matrix: Derivative

Type: Live Resin

Certificate of Analysis

COMPLIANCE FOR RETAIL

Sample: DA40828010-008

Harvest/Lot ID: 1101 3428 6432 7296 Batch#: 1101 3428 6432 7296

Cultivation Facility: FL - Indiantown (3734) Processing Facility: FL - Indiantown (3734)

Source Facility: FL - Indiantown (3734)

Seed to Sale# 1101 3428 6432 7296

Batch Date: 08/16/24 Sample Size Received: 15.5 gram

Total Amount: 640 units

Retail Product Size: 0.5 gram

Retail Serving Size: 0.5 gram

Servings: 1 Ordered: 08/22/24

Sampled: 08/28/24

PASSED

Completed: 09/06/24 Sampling Method: SOP.T.20.010

Sep 06, 2024 | Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US

Pages 1 of 2

SAFETY RESULTS

Pesticides **PASSED**

Heavy Metals PASSED

Microbials **PASSED**

Mycotoxins PASSED

Residuals Solvents **PASSED**

PASSED

Water Activity **PASSED**

Moisture **NOT TESTED**

Terpenes TESTED

PASSED

Cannabinoid

Total THC

Total THC/Container: 419.180 mg

Total CBD

Total CBD/Container: 0.890 mg

Reviewed On: 08/30/24 12:42:53

Batch Date: 08/29/24 11:03:35

Total Cannabinoids

Total Cannabinoids/Container: 444.600

								,		
D9-THC	THCA	CBD	CBDA	D8-THC	CBG	CBGA	CBN	THCV	CBDV	СВС
83.448	0.443	0.178	ND	0.487	2.738	0.294	0.208	0.317	ND	0.807
834.48	4.43	1.78	ND	4.87	27.38	2.94	2.08	3.17	ND	8.07
0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
					%		%			
	83.448 834.48	83.448 0.443 834.48 4.43	83.448 0.443 0.178 834.48 4.43 1.78	83.448 0.443 0.178 ND 834.48 4.43 1.78 ND	83.448 0.443 0.178 ND 0.487 834.48 4.43 1.78 ND 4.87	83.448 0.443 0.178 ND 0.487 2.738 834.48 4.43 1.78 ND 4.87 27.38	83.448 0.443 0.178 ND 0.487 2.738 0.294 834.48 4.43 1.78 ND 4.87 27.38 2.94	83.448 0.443 0.178 ND 0.487 2.738 0.294 0.208 834.48 4.43 1.78 ND 4.87 27.38 2.94 2.08	83.448 0.443 0.178 ND 0.487 2.738 0.294 0.208 0.317 834.48 4.43 1.78 ND 4.87 27.38 2.94 2.08 3.17	83.448 0.443 0.178 ND 0.487 2.738 0.294 0.208 0.317 ND 834.48 4.43 1.78 ND 4.87 27.38 2.94 2.08 3.17 ND

Extracted by: 08/29/24 14:25:58

Analysis Method: SOP.T.40.031, SOP.T.30.031 Analytical Batch: DA077426POT

Instrument Used: DA-LC-003

Analyzed Date: 08/29/24 14:28:18

Dilution: 400

Reagent: 082724.R03: 081324.16: 080624.R01

Consumables: 947.109; 021824CH01; CE0123; R1KB14270

Pipette: DA-079; DA-108; DA-078

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA Testing 97164

Signature 09/06/24

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Kaycha Labs

Cresco Liquid Live Resin Cartridge 500mg - White Trffl Mnts (I)

White Truffle Mints Matrix: Derivative Type: Live Resin

Certificate of Analysis

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA40828010-008 Harvest/Lot ID: 1101 3428 6432 7296

Batch#: 1101 3428 6432

Sampled: 08/28/24 Ordered: 08/28/24

Sample Size Received: 15.5 gram Total Amount : 640 units

Completed: 09/06/24 Expires: 09/06/25 Sample Method: SOP.T.20.010

Page 2 of 2

Terpenes

TESTED

Terpenes	LOD (%)	mg/unit	%	Result (%)	Terpenes	LOD (%)	mg/unit	t %	Result (%)
TOTAL TERPENES	0.007	27.67	2.767		ALPHA-PHELLANDRENE	0.007	ND	ND	
BETA-CARYOPHYLLENE	0.007	14.25	1.425		ALPHA-PINENE	0.007	ND	ND	
ALPHA-HUMULENE	0.007	6.71	0.671		ALPHA-TERPINENE	0.007	ND	ND	
ALPHA-BISABOLOL	0.007	2.40	0.240		ALPHA-TERPINOLENE	0.007	ND	ND	
LINALOOL	0.007	1.36	0.136		BETA-MYRCENE	0.007	ND	ND	
TRANS-NEROLIDOL	0.005	1.10	0.110		BETA-PINENE	0.007	ND	ND	
ALPHA-TERPINEOL	0.007	0.76	0.076	i i	CIS-NEROLIDOL	0.003	ND	ND	
FENCHYL ALCOHOL	0.007	0.45	0.045		GAMMA-TERPINENE	0.007	ND	ND	
LIMONENE	0.007	0.33	0.033		Analyzed by:	Weight:	Extra	ction date:	Extracted by:
GERANIOL	0.007	0.31	0.031		4451, 3605, 585, 1440	0.2456g		9/24 13:20:35	
3-CARENE	0.007	ND	ND		Analysis Method: SOP.T.30.061A.FL, SOP.T.40.06	1A.FL			
BORNEOL	0.013	ND	ND		Analytical Batch : DA077400TER				/30/24 12:42:55
CAMPHENE	0.007	ND	ND		Instrument Used: DA-GCMS-008 Analyzed Date: 08/29/24 13:20:52		Batc	h Date: 08/2	9/24 09:30:43
CAMPHOR	0.007	ND	ND		Dilution: 10				
CARYOPHYLLENE OXIDE	0.007	ND	ND		Reagent: 022224.04				
CEDROL	0.007	ND	ND		Consumables: 947.109; 240321-634-A; 28067072	23; CE0123			
EUCALYPTOL	0.007	ND	ND		Pipette : DA-065				
FARNESENE	0.007	ND	ND		Terpenoid testing is performed utilizing Gas Chromatogra	aphy Mass Spectro	netry. For all	l Flower sample	es, the Total Terpenes % is dry-weight corrected.
FENCHONE	0.007	ND	ND						
GERANYL ACETATE	0.007	ND	ND						
GUAIOL	0.007	ND	ND						
HEXAHYDROTHYMOL	0.007	ND	ND						
ISOBORNEOL	0.007	ND	ND						
ISOPULEGOL	0.007	ND	ND						
NEROL	0.007	ND	ND						
OCIMENE	0.007	ND	ND						
PULEGONE	0.007	ND	ND						
SABINENE	0.007	ND	ND						
SABINENE HYDRATE	0.007	ND	ND						
VALENCENE	0.007	ND	ND						
ALPHA-CEDRENE	0.005	ND	ND		ĺ				
Total (%)			2.767						

Total (%)

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 09/06/24