

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

COMPLIANCE FOR RETAIL

Kaycha Labs

Supply Smalls 7g - Grntz (I) Gruntz Matrix: Flower

Type: Flower-Cured-Small Sample:DA40725013-002 Harvest/Lot ID: 1101 3428 6431 0304 Batch#: 1101 3428 6431 0304 Cultivation Facility: FL - Indiantown (3734) Processing Facility : FL - Indiantown (3734) Source Facility : FL - Indiantown (3734)

Pages 1 of 5

Seed to Sale# 1101 3428 6431 0307 Batch Date: 07/16/24 Sample Size Received: 5 units Total Amount: 629 units Retail Product Size: 7 gram Retail Serving Size: 7 gram Servings: 1 Ordered: 07/16/24 Sampled: 07/25/24

Completed: 07/29/24 Sampling Method: SOP.T.20.010

PASSED

MISC.

Jul 29, 2024 | Sunnyside 22205 Sw Martin Hwy indiantown, FL, 34956, US

SAFETY RESULTS

Pesticio PASS	des Hea	Hg avy Metals ASSED	Microbials PASSED	တို့ Mycotox PASSE	D	Residuals Solvents	Filth PASSED		Activity SSED	Moisture PASSED	Constant Con
Ä	Cannak	oinoid									PASSED
Total THC 20.904% Total THC/Container : 1463.280 mg Total CBD Total CBD D.042% Total CBD/Container : 2.940 mg Total Cannabinoids Container : 1711.220 mg											
		П									
	D9-THC	тнса	CBD	CBDA	D8-THC	CBG	CBGA	CBN	тнсу	CBDV	СВС
%	0.673 47.11	23.069 1614.83	ND ND	0.049 3.43	0.041 2.87	0.058 4.06	0.481 33.67	ND ND	ND ND	ND ND	0.075 5.25
mg/unit LOD	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
LOD	%	%	%	%	%	%	%	%	%	%	%
Analyzed by: 3335, 1665, 585				Weight: 0.2113g	E	traction date: 7/26/24 13:25:22			Extr	acted by: 5,3335	
Analytical Batch Instrument Used	Analysis Method : SOP.T.40.031, SOP.T.30.031 Reviewed On : 07/29/24 09:43:45 Analytical Batch : DA075792POT Reviewed On : 07/29/24 09:43:45 Instrument Used : DA-LC-O02 Batch Date : 07/26/24 07:09:31 Analyzed Date : 07/26/24 13:29:07 Control of the second date in the sec										
Consumables : 9	24.R15; 042723.19 947.100; LLS-00-00 9; DA-108; DA-078	05; 280670723; R1K	B14270								

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 54-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

Signature 07/29/24

Supply Smalls 7g - Grntz (I) Gruntz Matrix : Flower Type: Flower-Cured-Small

PASSED

TESTED

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Julio.Chavez@crescolabs.com
 Sample : DA40725013-002

 Harvest/Lot ID: 1101 3428 6431
 O304

 Batch#: 1101 3428 6431
 Sample

 0304
 Total And

Sampled : 07/25/24 Ordered : 07/25/24 Sample Size Received : 5 units Total Amount : 629 units Completed : 07/29/24 Expires: 07/29/25 Sample Method : SOP.T.20.010

Page 2 of 5

0

Townono	
Terpenes	5

Terpenes	LOD (%)	mg/unit	%	Result (%)	Terpenes		OD %)	mg/unit	%	Result (%)	
OTAL TERPENES	0.007	198.94	2.842		VALENCENE		.007	ND	ND		
BETA-CARYOPHYLLENE	0.007	61.18	0.874		ALPHA-CEDRENE	0	.005	ND	ND		
IMONENE	0.007	49.77	0.711		ALPHA-PHELLANDRENE	0	.007	ND	ND		
LINALOOL	0.007	22.33	0.319		ALPHA-TERPINENE	0	.007	ND	ND		
ALPHA-HUMULENE	0.007	17.22	0.246		ALPHA-TERPINOLENE	0	.007	ND	ND		
ETA-PINENE	0.007	8.89	0.127		CIS-NEROLIDOL	0	.003	ND	ND		
ALPHA-PINENE	0.007	8.33	0.119		GAMMA-TERPINENE	0	.007	ND	ND		
ARNESENE	0.007	7.56	0.108		TRANS-NEROLIDOL	0	.005	ND	ND		
LPHA-BISABOLOL	0.007	6.44	0.092		Analyzed by:	Weight:		Extraction d	ate:		Extracted by:
ALPHA-TERPINEOL	0.007	6.02	0.086		4451, 585, 1440	1.0666g		07/26/24 13			4451
FENCHYL ALCOHOL	0.007	5.95	0.085		Analysis Method : SOP.T.30						
BETA-MYRCENE	0.007	5.25	0.075		Analytical Batch : DA07580					07/29/24 11:27:06	
-CARENE	0.007	ND	ND		Instrument Used : DA-GCMS Analyzed Date : 07/26/24 1			Batch	Date:0/	/26/24 09:39:14	
BORNEOL	0.013	ND	ND		Pilution : 10						
AMPHENE	0.007	ND	ND		Reagent : 022224.07						
AMPHOR	0.007	ND	ND			0613-634-D; 280670723; CE01	23				
ARYOPHYLLENE OXIDE	0.007	ND	ND		Pipette : DA-065						
EDROL	0.007	ND	ND		Terpenoid testing is performed	utilizing Gas Chromatography Mas	s Spectro	ometry. For all I	Hower sam	ples, the Total Terpenes %	is dry-weight corrected.
UCALYPTOL	0.007	ND	ND								
ENCHONE	0.007	ND	ND								
ERANIOL	0.007	ND	ND								
GERANYL ACETATE	0.007	ND	ND								
GUAIOL	0.007	ND	ND								
IEXAHYDROTHYMOL	0.007	ND	ND								
SOBORNEOL	0.007	ND	ND								
SOPULEGOL	0.007	ND	ND								
IEROL	0.007	ND	ND								
CIMENE	0.007	ND	ND								
ULEGONE	0.007	ND	ND								
ABINENE	0.007	ND	ND								
SABINENE HYDRATE	0.007	ND	ND								

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule SK-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

Signature 07/29/24

Supply Smalls 7g - Grntz (I) Gruntz Matrix : Flower Type: Flower-Cured-Small

PASSED

PASSED

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA40725013-002 Harvest/Lot ID: 1101 3428 6431 0304 Batch# : 1101 3428 6431 Sample

0304 Sampled : 07/25/24 Ordered : 07/25/24 Sample Size Received : 5 units Total Amount : 629 units Completed : 07/29/24 Expires: 07/29/25 Sample Method : SOP.T.20.010

Page 3 of 5

	ष्ट्
	0
- 1	

Pesticides

Pesticide	LOD	Units	Action Level	Pass/Fail	Result	Pesticide	LOD	Units	Action Level	Pass/Fail	Result
TOTAL CONTAMINANT LOAD (PESTICIDES)	0.010	ppm	5	PASS	ND	OXAMYL	0.010	ppm	0.5	PASS	ND
TOTAL DIMETHOMORPH	0.010	ppm	0.2	PASS	ND	PACLOBUTRAZOL	0.010	ppm	0.1	PASS	ND
TOTAL PERMETHRIN	0.010	ppm	0.1	PASS	ND	PHOSMET		ppm	0.1	PASS	ND
TOTAL PYRETHRINS	0.010	ppm	0.5	PASS	ND			ppm	3	PASS	ND
TOTAL SPINETORAM	0.010	ppm	0.2	PASS	ND	PIPERONYL BUTOXIDE					
TOTAL SPINOSAD	0.010	ppm	0.1	PASS	ND	PRALLETHRIN		ppm	0.1	PASS	ND
ABAMECTIN B1A	0.010	ppm	0.1	PASS	ND	PROPICONAZOLE	0.010	ppm	0.1	PASS	ND
ACEPHATE	0.010	ppm	0.1	PASS	ND	PROPOXUR	0.010	ppm	0.1	PASS	ND
ACEQUINOCYL	0.010	ppm	0.1	PASS	ND	PYRIDABEN	0.010	ppm	0.2	PASS	ND
ACETAMIPRID	0.010	ppm	0.1	PASS	ND	SPIROMESIFEN	0.010	ppm	0.1	PASS	ND
ALDICARB	0.010	ppm	0.1	PASS	ND	SPIROTETRAMAT	0.010	ppm	0.1	PASS	ND
AZOXYSTROBIN	0.010	ppm	0.1	PASS	ND	SPIROXAMINE	0.010	ppm	0.1	PASS	ND
BIFENAZATE	0.010	ppm	0.1	PASS	ND	TEBUCONAZOLE		ppm	0.1	PASS	ND
BIFENTHRIN	0.010	ppm	0.1	PASS	ND			ppm	0.1	PASS	ND
BOSCALID	0.010	ppm	0.1	PASS	ND	THIACLOPRID					
CARBARYL	0.010	ppm	0.5	PASS	ND	THIAMETHOXAM		ppm	0.5	PASS	ND
CARBOFURAN	0.010	ppm	0.1	PASS	ND	TRIFLOXYSTROBIN		ppm	0.1	PASS	ND
CHLORANTRANILIPROLE	0.010	ppm	1	PASS	ND	PENTACHLORONITROBENZENE (PCNB) *	0.010	PPM	0.15	PASS	ND
CHLORMEQUAT CHLORIDE	0.010	maa	1	PASS	ND	PARATHION-METHYL *	0.010	PPM	0.1	PASS	ND
CHLORPYRIFOS	0.010		0.1	PASS	ND	CAPTAN *	0.070	PPM	0.7	PASS	ND
CLOFENTEZINE	0.010	maa	0.2	PASS	ND	CHLORDANE *	0.010	PPM	0.1	PASS	ND
COUMAPHOS	0.010		0.1	PASS	ND	CHLORFENAPYR *	0.010		0.1	PASS	ND
DAMINOZIDE	0.010		0.1	PASS	ND	CYFLUTHRIN *	0.050		0.5	PASS	ND
DIAZINON	0.010		0.1	PASS	ND		0.050		0.5	PASS	ND
DICHLORVOS	0.010		0.1	PASS	ND	CYPERMETHRIN *			0.5		
DIMETHOATE	0.010		0.1	PASS	ND	Analyzed by: Weight:		tion date:		Extracted	i by:
ETHOPROPHOS	0.010	maa	0.1	PASS	ND	3379, 585, 1440 1.1892g		24 14:06:57	COD T 40 101	3621	
ETOFENPROX	0.010		0.1	PASS	ND	Analysis Method : SOP.T.30.101.FL (Gainesville), S SOP.T.40.102.FL (Davie)	50P.1.30.10	IZ.FL (Davie), :	SOP.1.40.101.	.FL (Gainesville)	h
ETOXAZOLE	0.010		0.1	PASS	ND	Analytical Batch : DA075816PES		Reviewed O	n:07/29/24 0	9.41.26	
FENHEXAMID	0.010		0.1	PASS	ND	Instrument Used :DA-LCMS-004 (PES)			07/26/24 10:		
FENOXYCARB	0.010		0.1	PASS	ND	Analyzed Date : N/A					
FENPYROXIMATE	0.010		0.1	PASS	ND	Dilution : 250					
FIPRONIL	0.010		0.1	PASS	ND	Reagent: 072324.R04; 071824.R06; 071824.R05;	072324.R0	06; 072224.R1	9; 071824.R0	3	
FLONICAMID	0.010		0.1	PASS	ND	Consumables : 326250IW					
FLUDIOXONIL	0.010	P.P.	0.1	PASS	ND	Pipette : DA-093; DA-094; DA-219 Testing for agricultural agents is performed utilizing	Linuid Change	to Toi		- Maran Carashara	
HEXYTHIAZOX	0.010		0.1	PASS	ND	accordance with F.S. Rule 64ER20-39.	Liquid Chron	natograpny iri	pie-Quadrupoi	e Mass Spectron	hetry in
IMAZALIL	0.010		0.1	PASS	ND	Analyzed by: Weight:	Evt	raction date:		Extracte	ad by:
IMIDACLOPRID	0.010		0.4	PASS	ND	450, 795, 585, 1440 1.1892q		26/24 14:06:5	7	3621	d by.
KRESOXIM-METHYL	0.010		0.1	PASS	ND	Analysis Method : SOP.T.30.151.FL (Gainesville), 9	SOP.T.30.15	1A.FL (Davie)	. SOP.T.40.15	1.FL	
MALATHION	0.010		0.2	PASS	ND	Analytical Batch : DA075818VOL		eviewed On :			
METALAXYL	0.010		0.1	PASS	ND	Instrument Used :DA-GCMS-001	Ba	atch Date :07	/26/24 10:19:	26	
METHIOCARB	0.010		0.1	PASS	ND	Analyzed Date :07/26/24 17:55:01					
METHOCARD	0.010		0.1	PASS	ND	Dilution : 250					
MEVINPHOS	0.010		0.1	PASS	ND	Reagent: 071824.R05; 071024.R46; 071024.R47 Consumables: 326250IW: 14725401					
MYCLOBUTANIL	0.010		0.1	PASS	ND	Pipette : DA-080; DA-146; DA-218					
NALED	0.010		0.25	PASS	ND	Testing for agricultural agents is performed utilizing	Gas Chroma	tography Triple	e-Quadrupole N	Mass Spectrome	try in
INLLY	0.010	6600	0.23			accordance with F.S. Rule 64ER20-39.		5. april 11 pr		opeca offic	

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Sen Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature

07/29/24

Supply Smalls 7g - Grntz (I) Gruntz Matrix : Flower Type: Flower-Cured-Small

PASSED

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Julio.Chavez@crescolabs.com Sample : DA40725013-002 Harvest/Lot ID: 1101 3428 6431 0304 Batch# : 1101 3428 6431 Sample

0304 Sampled : 07/25/24 Ordered : 07/25/24 Sample Size Received : 5 units Total Amount : 629 units Completed : 07/29/24 Expires: 07/29/25 Sample Method : SOP.T.20.010

Page 4 of 5

Ç	Microl	oial			PAS	SED	လို့	Му	cotoxi	ins			PAS	SED
Analyte		LOD	Units	Result	Pass / Fail	Action Level	Analyte			LOD	Units	Result	Pass / Fail	Action Level
ASPERGILLU	5 TERREUS			Not Present	PASS		AFLATOXIN	32		0.002	ppm	ND	PASS	0.02
ASPERGILLU	5 NIGER			Not Present	PASS		AFLATOXIN	31		0.002	ppm	ND	PASS	0.02
ASPERGILLUS	5 FUMIGATUS			Not Present	PASS		OCHRATOXII	A		0.002	ppm	ND	PASS	0.02
ASPERGILLU	5 FLAVUS			Not Present	PASS		AFLATOXIN	31		0.002	ppm	ND	PASS	0.02
5ALMONELLA	SPECIFIC GENI	E		Not Present	PASS		AFLATOXIN	G2		0.002	ppm	ND	PASS	0.02
ECOLI SHIGE				Not Present	PASS		Analyzed by:		Weight:	Extraction da	ite:		Extracted	by:
TOTAL YEAS	AND MOLD	10	CFU/g	3000	PASS	100000	3379, 585, 144	0	1.1892g	07/26/24 14:	06:57		3621	
nalyzed by: 390, 4520, 58	5, 1440	Weight: 1.0458g	Extraction 0 07/26/24 14		Extracte 3390	d by:	SOP.T.30.102.	FL (Davie),	SOP.T.40.102.F					
	d:SOP.T.40.0560 h:DA075798MIC	C, SOP.T.40.0	58.FL, SOP.T.		wed On : 07	7/29/24	Analytical Bate Instrument Use Analyzed Date	ed:N/A	ST/MAC			7/29/24 0 26/24 10:		
55*C) DA-020 DA-049,Fisher Analyzed Date Dilution : 10 Reagent : 0719 Consumables :	vcler DA-010,Fish Fisher Scientific I Scientific Isotemp : 07/26/24 14:18: 24.10; 071924.14 7573003022	sotemp Heat Heat Block (08	Block (95*C) (55*C) DA-02	1			Consumables : Pipette : DA-09	326250IW 93; DA-094 ing utilizing	; DA-219 Liquid Chromatog	1824.R05; 0723 graphy with Triple				
Pipette : N/A		Weight:	Extraction o	later	Extracte	d by:	Hg	Неа	avy Me	etals			PAS	SEC
3390, 4531, 58	5, 1440	1.0458g	07/26/24 14		3390	a by.								
	d : SOP.T.40.208						Metal			LOD	Units	Result	Pass / Fail	Action Level
	h : DA075799TYM d : Incubator (25*			wed On : 07/29, Date : 07/26/24			TOTAL CONT		LOAD METAL	S 0.080	ppm	ND	PASS	1.1
	07/26/24 16:33:		Datti	Date: 07/20/2	4 09.11.14		ARSENIC			0.020	ppm	ND	PASS	0.2
ilution : 10							CADMIUM			0.020	ppm	ND	PASS	0.2
	24.10; 071924.14	4; 070324.R3	5				MERCURY			0.020	ppm	ND	PASS	0.2
onsumables :	N/A						LEAD			0.020	ppm	ND	PASS	0.5
Pipette : N/A Total yeast and mold testing is performed utilizing MPN and traditional culture based techniques in							Analyzed by: Weight: Extraction date: Extracted by: 1022, 585, 1440 0.2071g 07/26/24 11:35:33 1022,4056						y:	
ccordance with	F.S. Rule 64ER20-39	9.					Analysis Metho Analytical Bato Instrument Us Analyzed Date	h:DA0758 ed:DA-ICP		Reviewe		/29/24 09: 6/24 09:13		
							071724.R10		72224.R03; 072 20423CH01; 21	2524.R19; 0722 L0508058	24.R01; ()72224.R0	2; 061724	ł.01;

Consumables : 179436; 120423CH01; 210508058 Pipette : DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

Signature 07/29/24

Page 5 of 5

Supply Smalls 7g - Grntz (I) Gruntz Matrix : Flower Type: Flower-Cured-Small

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

PASSED

PASSED

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Julio Chavez@crescolabs.com Sample : DA40725013-002 Harvest/Lot ID: 1101 3428 6431 0304 Batch#: 1101 3428 6431 0304 Sampled : 07/25/24

P/F

PASS

Ordered : 07/25/24

Result

ND

Sample Size Received : 5 units Total Amount : 629 units Completed : 07/29/24 Expires: 07/29/25 Sample Method : SOP.T.20.010

Filth and Foreign Material

Analysis Method : SOP.T.40.090

Analyzed Date : 07/26/24 21:37:51

Analyte

Analyzed by: 1879, 585, 1440

Dilution : N/A

Reagent : N/A Consumables : N/A

Pipette : N/A

Filth/Foreign **Material**

Weight:

Water Activity

1g

Analytical Batch : DA075851FIL Instrument Used : Filth/Foreign Material Microscope

LOD

0.100 %

Units

Extraction date

07/26/24 21:50:39

Extracted by:

PASSED

N/A

Reviewed On : 07/26/24 21:45:47

Batch Date : 07/26/24 21:33:57

Action Level	Analyte Moisture Content		LOD 1.00	Units %	Result 11.16	P/F PASS	Action Level			
acted by:	Analyzed by: 4512, 585, 1440	Weight: 0.502g		traction d //26/24 15		Extracted by: 4512				
24 21:45:47 21:33:57	Analysis Method : SOP.T.40.021 Analytical Batch : DA075834MOI Reviewed On : 07/ 09:23:03									
	Instrument Used : DA-003 Moisture Analyzer, DA-046 Moisture Batch Date : 07/26/24 11:27:59 Analyzer, DA-263 Moisture Analyser, DA-264 Moisture Analyser Analyzed Date : 07/26/24 15:54:48									
	Dilution : N/A Reagent : 092520.50; 020 Consumables : N/A)124.02								
and microscope	Pipette : DA-066									

Moisture Content analysis utilizing loss-on-drying technology in accordance with F.S. Rule 64ER20-39

Reagent : 051624.01

LOD Units Result P/F Action Level Analyte PASS Water Activity 0.010 aw 0.536 0.65 Extracted by: 4512 Extraction date: 07/26/24 16:19:58 Analyzed by: 4512, 585, 1440 Weight: 0.93g Analysis Method : SOP.T.40.019 Reviewed On: 07/29/24 09:21:39 Analytical Batch : DA075837WAT Instrument Used : DA-028 Rotronic Hygropalm Batch Date : 07/26/24 11:42:18 Analyzed Date : 07/26/24 16:26:30 Dilution : N/A

Consumables : PS-14 Pipette : N/A

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 54-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

Signature 07/29/24