

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

COMPLIANCE FOR RETAIL

SUPPLY

Certificate of Analysis

Kaycha Labs

Supply Smalls 14g - Bnanas Foster (S) **Bananas Foster**

Matrix: Flower Type: Flower-Cured-Small

Sample:DA40715005-015 Harvest/Lot ID: 1101 3428 6430 5998 Batch#: 1101 3428 6430 5998

Cultivation Facility: FL - Indiantown (3734) Processing Facility : FL - Indiantown (3734) Source Facility : FL - Indiantown (3734) Seed to Sale# 1101 3428 6430 6040 Batch Date: 07/09/24 Sample Size Received: 70 units Total Amount: 863 units Retail Product Size: 14 gram Retail Serving Size: 14 gram Servings: 1 Ordered: 07/09/24 Sampled: 07/15/24 Completed: 07/18/24

Sampling Method: SOP.T.20.010

Pages 1 of 5

PASSED

MISC.

Jul 18, 2024 | Sunnyside 22205 Sw Martin Hwy indiantown, FL, 34956, US

SAFETY RESULTS

SALLIIRI	JULIS										Mise.
R 0	[Hg	ĊĿ,	သို့		Ä			$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$		Ô
Pesticid PASSE		vy Metals ASSED	Microbials PASSED	PASSED				Moisture PASSED	Terpenes TESTED		
Ä	Cannab	oinoid									PASSED
	1	THC 896 HC/Container : :	-			CBD 041% BD/Container			324	Cannabinoid 723%	, 0
	D9-THC	тнса	CBD	CBDA	D8-THC	CBG	CBGA	CBN	тнсу	CBDV	CBC
%	0.855	22.852	ND	0.047	0.076	0.077	0.788	ND	ND	ND	0.028
mg/unit	119.70	3199.28	ND		10.64	10.78	110.32	ND	ND	ND	3.92
LOD	0.001	0.001	0.001		0.001	0.001	0.001	0.001	0.001	0.001	0.001
	%	%	%	%	%	%	%	%	%	%	%
alyzed by: 65, 585, 1440			Weight: 0.1823g			ion date: 24 13:53:24				Extracted by: 1665	
nalytical Batch : strument Used	: SOP.T.40.031, SC : DA075269POT : DA-LC-002 07/16/24 13:54:09	DP.T.30.031				Reviewed On : 07 Batch Date : 07/1					
Consumables : 94	4.R01; 062624.15; 47.109; 280670723 ; DA-108; DA-078	071224.R01 3; CE0123; R1KB142	270								

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 54-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

Signature 07/18/24

. Supply Smalls 14g - Bnanas Foster (S) Bananas Foster Matrix : Flower Type: Flower-Cured-Small

PASSED

TESTED

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA40715005-015 Harvest/Lot ID: 1101 3428 6430 5998 Batch# : 1101 3428 6430 5998

Sampled : 07/15/24 Ordered : 07/15/24

Sample Size Received : 70 units Total Amount : 863 units Completed : 07/18/24 Expires: 07/18/25 Sample Method : SOP.T.20.010

Page 2 of 5

Terpenes

VULEGONE SABINENE HYDRATE SABINENE HYDRATE VALENCENE LIPHA-CEDRENE IS-NEROLIDOL SAMMA-TERPINENE TRANS-NEROLIDOL Salyzed by: SJ, 3605, 855, 1440 Salyzed by: SJ, 3605, 855, 140 Salyzed batch: DA0752707ER strument Used: D-AGCM5-004 salyzed bate: 07/16/24 13:29:02 Lution : 10 sert: 02.224.07 nsumable: 947.109; 230613-634-D; 28061		07/16		2 /17/24 10:44:58 6/24 09:34:36	Extracted by: 4451
ABINENE HYDRATE ALENCENE LIPHA-CEDRENE IS-NEROLIDOL SAMMA-TERPINENE TRANS-NEROLIDOL alyzed by: 51, 3605, 985, 1440 alytise Method : SOP T.30.061A.FL, SOP T.40. alytise Method : SOP T.30.061A.FL, SOP T.40. sopration : SOP T.30.061A.FL, SOP T.40. sopration : SOP T.30.061A.FL, SOP T.40. SOP T.50.065. SOP T.	0.007 0.007 0.005 0.003 0.007 0.005 Weight: 1.0871g	ND ND ND ND ND Extrac 07/16, Revie	ND ND ND ND ND tion date: (24 13:28:32	/17/24 10:44:58	
ALENCENE LIPHA-CEDRENE IS-NEROLIDOL SAMMA-TERPINENE RANS-NEROLIDOL alyzed by: 51, 3605, 585, 1440 alyzis Method : SOPT 30.051A EL, SOPT.40 alyzis Method : SOPT 30.051A EL, SOPT.41 alyzed bate : DAG752791EB Homory Control (1997) Mayred bate : DAG752791EB Homory Control (1997) Bayred bate : DAG752701 Bayred Bayred	0.007 0.005 0.003 0.007 0.005 Weight: 1.0871g	ND ND ND ND Extrac 07/16, Revie	ND ND ND ND tition date: (24 13:28:32	/17/24 10:44:58	
LLPHA-CEDRENE IS-NEROLIDOL AMMA-TERPINENE TRANS-MEROLIDOL alyzed by: s), 3609, 55, 1440 31, 3609, 50, 1440 alyziela Batch DA/5279TER shytical Batch DA/5279TER shyteal Datch DA/5279TER shyteal Datch D1/16/24 13:29.02 lution : 10 agent : 022224.07 nsumables : 947.109; 230613-634-D; 28061	0.005 0.003 0.007 0.005 Weight: 1.0871g 00.061A.FL	ND ND ND Extrac 07/16	ND ND ND tition date: (24 13:28:32	/17/24 10:44:58	
IS-NEROLIDOL SAMMA-TERPINENE FANS-NEROLIDOL alyzed by: S1, 3605, 985, 1440 alytical Batch : DA0752797ER strument Used : DA0752797ER strument Used : DA0752797ER strument Used : DA05CN5004 alyzed bate : 07/16/24 13:29:02 Lution : 10 agent : 0.2224.07 nsumables : 947.109; 230613-634-D; 28061	0.003 0.007 0.005 Weight: 1.0871g	ND ND ND Extrac 07/16	ND ND ND (24 13:28:32 (24 0n : 07)	/17/24 10:44:58	
GAMMA-TERPINENE RANS-ARENOLDOL alyzed by: 51, 3605, 585, 140 alysis Method : SOP T-30.061A.FL, SOP.T.40 alytical Batch : DA075279TER shrtmamer Used : DA-GCMS-5040 byzed Date : 07/1624 13:29.02 lution : 10 agent : 0.22224.07 nsumables : 947.109; 230613-634-D; 2806'	0.007 0.005 Weight: 1.0871g 10.061A.FL	ND ND Extrac 07/16, Revie	ND ND (24 13:28:32 (24 0n : 07)	/17/24 10:44:58	
RANS-NEROLIDOL salyzed by: \$1, 3605, 385, 1440 alysis Method: 5:0P.T.30.061A.FL, 5:0P.T.40 alysis Method: 5:0P.T.30.061A.FL, 5:0P.T.40 alyzed Date: 1:0A075279TE strument Used: 0:A-GCM5-004 alyzed Date: 0:0716/24 13:29:02 lution: 1:0 agent: 0:22224.07 nsumables: 947.109; 230613-634-D; 2806/ pett: 1:0A-065	0.005 Weight: 1.0871g	ND Extrac 07/16 Revie	ND tion date: /24 13:28:32 wed On : 07/	/17/24 10:44:58	
alyzed by: 51, 3605, 955, 1440 alytise Method : SOP T.30.061A.FL, SOP T.40 alytise Mathod : SOP T.30.061A.FL, SOP T.40 alyted Batch : DA075279TR turment Used : D.AcGMS-004 alyzed Date : 0.716/24 13:29:02 lution : 10 agent : 0.22224.07 nsumables : 947.109; 230613-634-D; 28061 pett : D.AvG65	Weight: 1.0871g	Extrac 07/16 Revie	tion date: /24 13:28:32	/17/24 10:44:58	
51, 3605, 585, 1440 Jahyika Mehda - SOPT 30.051A FL, SOPT 40 Jahyika Batch : DA075279TEP strument Used : DA05CM5-004 Jahyzed Date : 07/16/24 13:29:02 lution : 10 agent : 022224.07 nsumables : 947.109; 230613-634-D; 2806' pette : DA-065	1.0871g	07/16	/24 13:28:32	/17/24 10:44:58	
51, 3605, 585, 1440 Jahyika Mehda - SOPT 30.051A FL, SOPT 40 Jahyika Batch : DA075279TEP strument Used : DA05CM5-004 Jahyzed Date : 07/16/24 13:29:02 lution : 10 agent : 022224.07 nsumables : 947.109; 230613-634-D; 2806' pette : DA-065	1.0871g	07/16	/24 13:28:32	/17/24 10:44:58	
labytical Batch : DA0752797ER strument Used : DA-GCMS-004 alyzed Date : 07/16/24 13:29:02 lution : 10 agent : 022224.07 nsumables : 947.109; 230613-634-D; 2806 pette : DA-065					
strument Used : DA-GCM5-004 Jalyzed Date : 07/16/24 13:29:02 Jution : 10 Juston : 022224.07 insumables : 947.109; 230613-634-D; 28063 pette : DA-065	570723; CE0123				
walyzed Date : 07/16/24 13:29:02 lution : 10 agent : 022224.07 nsumables : 947.109; 230613-634-D; 2806 pette : DA-065	570723; CE0123	Batch	1 Date : 07/10	0/24 09:34:36	
ution: 10 lagent: 022224.07 insumables: 947.109; 230613-634-D; 28063 pette: DA-065	570723; CE0123				
agent : 022224.07 insumables : 947.109; 230613-634-D; 2806 pette : DA-065	570723; CE0123				
pette : DA-065	570723; CE0123				
rpenoid testing is performed utilizing Gas Chroma	atography Mass Spectro	ometry. For all	Flower sample	es, the Total Terpenes %	is dry-weight corrected.

1.731

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

Signature 07/18/24

. Supply Smalls 14g - Bnanas Foster (S) Bananas Foster Matrix : Flower Type: Flower-Cured-Small

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA40715005-015 Harvest/Lot ID: 1101 3428 6430 5998 Batch# : 1101 3428 6430

5998 Sampled : 07/15/24 Ordered : 07/15/24

Sample Size Received : 70 units Total Amount : 863 units Completed : 07/18/24 Expires: 07/18/25 Sample Method : SOP.T.20.010

Page 3 of 5

R 0

Pesticides

Pesticide	LOD	Units	Action Level	Pass/Fail	Result	Pesticide	LOD	Units	Action Level	Pass/Fail	Result
OTAL CONTAMINANT LOAD (PESTICIDES)	0.010	ppm	5	PASS	ND	OXAMYL	0.010	maa (0.5	PASS	ND
TOTAL DIMETHOMORPH	0.010	ppm	0.2	PASS	ND	PACLOBUTRAZOL	0.010) mag	0.1	PASS	ND
OTAL PERMETHRIN	0.010	ppm	0.1	PASS	ND	PHOSMET) ppm	0.1	PASS	ND
TOTAL PYRETHRINS	0.010	ppm	0.5	PASS	ND				3	PASS	ND
OTAL SPINETORAM	0.010	ppm	0.2	PASS	ND	PIPERONYL BUTOXIDE) ppm			
TOTAL SPINOSAD	0.010	ppm	0.1	PASS	ND	PRALLETHRIN) ppm	0.1	PASS	ND
ABAMECTIN B1A	0.010	ppm	0.1	PASS	ND	PROPICONAZOLE	0.010) ppm	0.1	PASS	ND
CEPHATE	0.010	ppm	0.1	PASS	ND	PROPOXUR	0.010) ppm	0.1	PASS	ND
ACEQUINOCYL	0.010	ppm	0.1	PASS	ND	PYRIDABEN	0.010) ppm	0.2	PASS	ND
CETAMIPRID	0.010	ppm	0.1	PASS	ND	SPIROMESIFEN	0.010) ppm	0.1	PASS	ND
ALDICARB	0.010	ppm	0.1	PASS	ND	SPIROTETRAMAT	0.010) ppm	0.1	PASS	ND
ZOXYSTROBIN	0.010	ppm	0.1	PASS	ND	SPIROXAMINE	0.010	maa (0.1	PASS	ND
BIFENAZATE	0.010	ppm	0.1	PASS	ND	TEBUCONAZOLE) ppm	0.1	PASS	ND
BIFENTHRIN	0.010	ppm	0.1	PASS	ND	THIACLOPRID) ppm	0.1	PASS	ND
BOSCALID	0.010	ppm	0.1	PASS	ND				0.5	PASS	ND
CARBARYL	0.010	ppm	0.5	PASS	ND	THIAMETHOXAM) ppm			
CARBOFURAN	0.010	ppm	0.1	PASS	ND	TRIFLOXYSTROBIN) ppm	0.1	PASS	ND
CHLORANTRANILIPROLE	0.010	ppm	1	PASS	ND	PENTACHLORONITROBENZENE (PCNB) *) PPM	0.15	PASS	ND
CHLORMEQUAT CHLORIDE	0.010	ppm	1	PASS	ND	PARATHION-METHYL *	0.010) PPM	0.1	PASS	ND
CHLORPYRIFOS	0.010	ppm	0.1	PASS	ND	CAPTAN *	0.070) PPM	0.7	PASS	ND
LOFENTEZINE	0.010	ppm	0.2	PASS	ND	CHLORDANE *	0.010	PPM	0.1	PASS	ND
COUMAPHOS	0.010	ppm	0.1	PASS	ND	CHLORFENAPYR *	0.010	PPM	0.1	PASS	ND
DAMINOZIDE	0.010	ppm	0.1	PASS	ND	CYFLUTHRIN *	0.050) PPM	0.5	PASS	ND
DIAZINON	0.010	ppm	0.1	PASS	ND	CYPERMETHRIN *) PPM	0.5	PASS	ND
DICHLORVOS	0.010	ppm	0.1	PASS	ND				0.0		
DIMETHOATE	0.010	ppm	0.1	PASS	ND	Analyzed by: Weight: 3379, 585, 1440 0.9888g		tion date: 24 15:27:26		Extracted 3621	a by:
THOPROPHOS	0.010	ppm	0.1	PASS	ND	Analysis Method :SOP.T.30.101.FL (Gainesville			SOP T 40 101)
TOFENPROX	0.010	ppm	0.1	PASS	ND	SOP.T.40.102.FL (Davie)	.), 501.11.50.11	02.1 E (Duvic),	501.1.40.101	In E (Guinesville	
TOXAZOLE	0.010	ppm	0.1	PASS	ND	Analytical Batch : DA075292PES		Reviewed O	n:07/17/24 1	1:26:04	
ENHEXAMID	0.010	ppm	0.1	PASS	ND	Instrument Used : DA-LCMS-004 (PES)		Batch Date	:07/16/24 10:	44:44	
ENOXYCARB	0.010	ppm	0.1	PASS	ND	Analyzed Date : N/A					
ENPYROXIMATE	0.010	ppm	0.1	PASS	ND	Dilution : 250	04 071004 0		4 071024 00	c 040422.00	
IPRONIL	0.010	ppm	0.1	PASS	ND	Reagent : 071224.R22; 071024.R08; 070924.R Consumables : 326250IW	04; 071024.K	37; 062524.RU	4; 071024.R0	6; 040423.08	
LONICAMID	0.010	ppm	0.1	PASS	ND	Pipette : DA-093; DA-094; DA-219					
LUDIOXONIL	0.010	ppm	0.1	PASS	ND	Testing for agricultural agents is performed utilizi	na Liquid Chror	matography Tri	ple-Quadrupol	e Mass Spectror	metry in
IEXYTHIAZOX	0.010	ppm	0.1	PASS	ND	accordance with F.S. Rule 64ER20-39.	.9 =		h		
MAZALIL	0.010	ppm	0.1	PASS	ND	Analyzed by: Weight:	Extract	ion date:		Extracted	l by:
MIDACLOPRID	0.010	ppm	0.4	PASS	ND	450, 585, 1440 0.9888g	07/16/2	4 15:27:26		3621	
RESOXIM-METHYL	0.010	ppm	0.1	PASS	ND	Analysis Method : SOP.T.30.151.FL (Gainesville					
ALATHION	0.010	ppm	0.2	PASS	ND	Analytical Batch : DA075295VOL		eviewed On :			
1ETALAXYL	0.010	ppm	0.1	PASS	ND	Instrument Used :DA-GCMS-001 Analyzed Date :07/16/24 19:25:28	В	atch Date : 07	/10/24 10:46	:50	
1ETHIOCARB	0.010	ppm	0.1	PASS	ND	Dilution : 250					
IETHOMYL	0.010	ppm	0.1	PASS	ND	Reagent : 070924.R04; 040423.08; 071024.R4	6: 071024.R4	7			
1EVINPHOS	0.010	ppm	0.1	PASS	ND	Consumables : 326250IW; 14725401	-, -, 102 1114				
AYCLOBUTANIL	0.010	ppm	0.1	PASS	ND	Pipette : DA-080; DA-146; DA-218					
ALED		ppm	0.25	PASS	ND	Testing for agricultural agents is performed utilizi					

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 07/18/24

PASSED

PASSED

Supply Smalls 14g - Bnanas Foster (S) Bananas Foster Matrix : Flower Type: Flower-Cured-Small

PASSED

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Julio.Chavez@crescolabs.com Sample : DA40715005-015 Harvest/Lot ID: 1101 3428 6430 5998 Batch# : 1101 3428 6430 Sample

5998 Sampled : 07/15/24 Ordered : 07/15/24 Sample Size Received : 70 units Total Amount : 863 units Completed : 07/18/24 Expires: 07/18/25 Sample Method : SOP.T.20.010

	Pa	ge	4	of	5
--	----	----	---	----	---

Ċ,	Micro	bial			PAS	SED	လို့	Му	cotox	ins			PAS	SED
Analyte		LOI	O Units	Result	Pass / Fail	Action Level	Analyte			LOD	Units	Result	Pass / Fail	Action Level
ASPERGILLU	S TERREUS			Not Present	PASS		AFLATOXIN	B2		0.002	ppm	ND	PASS	0.02
ASPERGILLU	S NIGER			Not Present	PASS		AFLATOXIN	B1		0.002	ppm	ND	PASS	0.02
ASPERGILLU	S FUMIGATUS			Not Present	PASS		OCHRATOXI	A		0.002	ppm	ND	PASS	0.02
ASPERGILLU	S FLAVUS			Not Present	PASS		AFLATOXIN	G1		0.002	ppm	ND	PASS	0.02
	A SPECIFIC GEN	NE		Not Present	PASS		AFLATOXIN	G2		0.002	ppm	ND	PASS	0.02
ECOLI SHIGE	LLA			Not Present	PASS		Analyzed by:		Weight:	Extraction da	ite:		Extracted	by:
TOTAL YEAS	T AND MOLD	10	CFU/g	990	PASS	100000	3379, 585, 144	0	0.9888g	07/16/24 15:	27:26		3621	
Analyzed by: 1044, 4520, 58	5. 1440	Weight: 0.9685a	Extraction 0 07/16/24 11		Extracted 4520.453					nesville), SOP.T.	40.101.FL	. (Gainesv	ille),	
					4320,433	1	Analytical Bate		, SOP.T.40.102. 294MYC		wed On:0	7/17/24 1	0:30:56	
	d: SOP.T.40.056 h: DA075261MI		J58.FL, SOP. I	R	eviewed On 2:01:33	:07/18/24	Instrument Us Analyzed Date	ed:N/A			Date : 07/	, ,		
Dilution : 10	: 07/17/24 14:45 824.37; 061324.4 7573003038		36; 030724.3	3; 083123.106			Mycotoxins tesi accordance wit	n F.S. Rule 6	Liquid Chromato 34ER20-39.	etals	e-Quadrupo		PAS	
Analyzed by: 4044, 3621, 58	5, 1440	Weight: 0.9685g	Extraction c 07/16/24 11		Extracted 4520,453		Metal		_	LOD	Units	Result	Pass /	Action
Analysis Metho	d: SOP.T.40.208	B (Gainesville)	SOP T 40 20)9 FI			_						Fail	Level
	h: DA075262TY			ewed On : 07/1	8/24 18:04:4	47	TOTAL CONT	AMINANT	LOAD METAI	LS 0.080	ppm	ND	PASS	1.1
	d : Incubator (2		Bato	h Date : 07/16/2	24 07:45:49		ARSENIC			0.020	ppm	ND	PASS	0.2
nalyzed Date	: 07/16/24 18:44	1:56					CADMIUM			0.020	ppm	ND	PASS	0.2
Dilution: 10		40 070004 0					MERCURY			0.020	ppm	ND	PASS	0.2
leagent : 0613 Consumables :	324.37; 061324.4 N/A	48; 070324.R:	35				LEAD			0.020	ppm	ND	PASS	0.5
Pipette : N/A	,						Analyzed by: 1022, 4056, 58	5, 1440	Weigh 0.2492		on date: 11:02:58	3	Extracte 4056	ed by:
	mold testing is per F.S. Rule 64ER20-		MPN and tradi	tional culture base	ed techniques	; in	Analysis Metho Analytical Bato Instrument Us Analyzed Date	h : DA0753 ed : DA-ICP	PMS-004	Reviewe	ed On : 07/ ate : 07/10			
							070524.R05 Consumables :		L20423CH01; 2	70524.R27; 0715 210508058	524.R02; 0	71524.R0	3; 061724	4.01;

Consumables : 179436; 120423CH01; 21050805 Pipette : DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

Signature 07/18/24

Page 5 of 5

Supply Smalls 14g - Bnanas Foster (S) Bananas Foster Matrix : Flower Type: Flower-Cured-Small

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Julio.Chavez@crescolabs.com
 Sample : DA40715005-015

 Harvest/Lot ID: 1101 3428 6430
 Sample

 Batch# : 1101 3428 6430
 Sample

 5998
 Total Ar

 Sample: 07/15/24
 Complet

 Ordered: 07/15/24
 Sample

Sample Size Received : 70 units Total Amount : 863 units Completed : 07/18/24 Expires: 07/18/25 Sample Method : SOP.T.20.010

Filth/Foreign Material

PASSED

Analyte Filth and Forei	gn Material	LOD 0.100	Units %	Result ND	P/F PASS	Action Level	Analyte Moisture Content		LOD 1.00	Units %	Result 13.69	P/F PASS	Action Level
Analyzed by: 1879, 585, 1440	Wei	ght:	Extraction N/A	date:	Extra N/A	acted by:	Analyzed by: 4571, 585, 1440	Weight: 0.502g		xtraction d 7/17/24 10			tracted by: 571
		erial Micro	oscope		On : 07/17/ e : 07/17/24	/24 11:52:14 4 11:30:50	Analysis Method : SOP.T.4 Analytical Batch : DA0753 Instrument Used : DA-003 Analyzed Date : 07/17/24	12MOI Moisture A	nalyzei		Reviewed On Batch Date : (
Dilution : N/A Reagent : N/A Consumables : N/ Pipette : N/A	/A						Dilution : N/A Reagent : 092520.50; 020 Consumables : N/A Pipette : DA-066	124.02					
	aterial inspection is p cordance with F.S. Rul			ection utilizi	ng naked eye	e and microscope	Moisture Content analysis uti	lizing loss-or	-drying	technology	in accordance	with F.S. Ru	le 64ER20-39.
()	Water A	Activ	ity		PAS	SSED							

Analyte Water Activity	-	OD .010	Units aw	Result 0.499	P/F PASS	Action Level 0.65
Analyzed by: 4571, 585, 1440	Weight: 0.5794g		traction 0			tracted by:
Analysis Method : SOF Analytical Batch : DAO Instrument Used : DA- Analyzed Date : 07/17	075313WAT 028 Rotronic Hyg	ropal	m		Dn : 07/17/2 : 07/16/24	4 12:00:27 11:46:22
Dilution : N/A Reagent : 051624.01 Consumables : PS-14 Pipette : N/A						

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

Signature 07/18/24