

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Kaycha Labs

Supply Pre-Roll 1g - Bnanas Foster (S) **Bananas Foster** Matrix: Flower Type: Preroll

Certificate of Analysis

COMPLIANCE FOR RETAIL SUNNYSIDE 1

Sample:DA40715005-009 Harvest/Lot ID: 1001 3428 6430 4669 Batch#: 1001 3428 6430 4669 Cultivation Facility: FL - Indiantown (3734) Processing Facility : FL - Indiantown (3734) Source Facility : FL - Indiantown (3734) Seed to Sale# 1001 3428 6430 4669 Batch Date: 07/08/24 Sample Size Received: 26 gram Total Amount: 1000 units Retail Product Size: 1 gram Retail Serving Size: 1 gram Servings: 1 Ordered: 07/08/24 Sampled: 07/15/24 Completed: 07/18/24

Pages 1 of 5

Sampling Method: SOP.T.20.010

PASSED

MISC.

Jul 18, 2024 | Sunnyside 22205 Sw Martin Hwy indiantown, FL, 34956, US

SAFETY RESULTS

Pesticio PASS	, des He	Hg avy Metals PASSED	Microbials PASSED	တို့ Mycotoxin PASSED		Residuals Solvents	Filth PASSED		Activity SSED	Moisture PASSED	Constant Con
Ä	Cannal	binoid									PASSED
E.	3 19	I THC 9.924 ^c THC/Container :			0.	I CBD 048% CBD/Container :		The second second	323	Cannabinoid 619%	0
	D9-THC	THCA	CBD		ов-тнс	CBG	CBGA	CBN	тнсу	CBDV	СВС
%	0.642 6.42	21.987 219.87	ND ND).075).75	0.081 0.81	0.756 7.56	ND ND	ND ND	ND ND	0.023 0.23
mg/unit LOD	0.42	0.001	0.001		0.75 0.001	0.001	0.001	0.001	0.001	0.001	0.23
LOD	%	%	%		%	%	%	%	%	%	%
Analyzed by: 1665, 585, 1440		,0	Weight: 0.2148g		Extrac	tion date: 24 13:53:01	,,,	,,,		Extracted by: 1665	
Analytical Batch Instrument Used	d: SOP.T.40.031, S : DA075269POT d: DA-LC-002 07/16/24 13:54:0					Reviewed On : 07/1 Batch Date : 07/16					
Consumables : 9	24.R01; 062624.1! 947.109; 2806707 9; DA-108; DA-078	23; CE0123; R1KB14	270								

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 54-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 07/18/24

Supply Pre-Roll 1g - Bnanas Foster (S) Bananas Foster Matrix : Flower Type: Preroll

PASSED

TESTED

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Julio.Chavez@crescolabs.com
 Sample : DA40715005-009

 Harvest/Lot ID: 1001 3428 6430
 Sample

 Batch# : 1001 3428 6430
 Sample

 4669
 Total Ar

Sampled : 07/15/24 Ordered : 07/15/24 Sample Size Received : 26 gram Total Amount : 1000 units Completed : 07/18/24 Expires: 07/18/25 Sample Method : SOP.T.20.010

Page 2 of 5

\bigcirc

Terpenes

Terpenes	LOD (%)	mg/unit	t %	Result (%)		Terpenes	LOD (%)	mg/unit	%	Result (%)
OTAL TERPENES	0.007	9.04	0.904			SABINENE HYDRATE	0.007	ND	ND	
LPHA-TERPINOLENE	0.007	2.14	0.214			VALENCENE	0.007	ND	ND	
ETA-CARYOPHYLLENE	0.007	1.86	0.186			ALPHA-CEDRENE	0.005	ND	ND	
ETA-MYRCENE	0.007	1.27	0.127			ALPHA-PHELLANDRENE	0.007	ND	ND	
LPHA-HUMULENE	0.007	0.67	0.067			ALPHA-TERPINENE	0.007	ND	ND	
INALOOL	0.007	0.63	0.063			CIS-NEROLIDOL	0.003	ND	ND	
ETA-PINENE	0.007	0.52	0.052			GAMMA-TERPINENE	0.007	ND	ND	
CIMENE	0.007	0.51	0.051			TRANS-NEROLIDOL	0.005	ND	ND	
IMONENE	0.007	0.41	0.041			Analyzed by:	Weight:	Extrac	tion date:	Extracted by:
LPHA-BISABOLOL	0.007	0.38	0.038			4451, 3605, 585, 1440	1.0448g		/24 13:28:32	
LPHA-PINENE	0.007	0.36	0.036			Analysis Method : SOP.T.30.061A.FL, SOP.T.40.	061A.FL			
LPHA-TERPINEOL	0.007	0.29	0.029		1	Analytical Batch : DA075279TER Instrument Used : DA-GCMS-004				/17/24 10:30:17 6/24 09:34:36
CARENE	0.007	ND	ND			Analyzed Date : 07/16/24 13:29:02		Batcr	Date: U//1	6/24 09:34:36
ORNEOL	0.013	ND	ND		1	Dilution : 10				
AMPHENE	0.007	ND	ND			Reagent : 022224.07				
AMPHOR	0.007	ND	ND			Consumables : 947.109; 230613-634-D; 280670	0723; CE0123			
ARYOPHYLLENE OXIDE	0.007	ND	ND			Pipette : DA-065				
EDROL	0.007	ND	ND			Terpenoid testing is performed utilizing Gas Chromate	ography Mass Spectro	metry. For all	Flower sample	es, the Total Terpenes % is dry-weight corrected.
UCALYPTOL	0.007	ND	ND							
ARNESENE	0.001	ND	ND							
ENCHONE	0.007	ND	ND							
ENCHYL ALCOHOL	0.007	ND	ND							
ERANIOL	0.007	ND	ND							
ERANYL ACETATE	0.007	ND	ND							
UAIOL	0.007	ND	ND							
EXAHYDROTHYMOL	0.007	ND	ND							
SOBORNEOL	0.007	ND	ND							
SOPULEGOL	0.007	ND	ND							
EROL	0.007	ND	ND							
	0.007	ND	ND							
PULEGONE										
PULEGONE SABINENE	0.007	ND	ND							

Total (%)

0.904

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 07/18/24

Supply Pre-Roll 1g - Bnanas Foster (S) Bananas Foster Matrix : Flower Type: Preroll

PASSED

PASSED

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA40715005-009 Harvest/Lot ID: 1001 3428 6430 4669 Batch# : 1001 3428 6430 Sample

4669 Sampled : 07/15/24 Ordered : 07/15/24 Sample Size Received : 26 gram Total Amount : 1000 units Completed : 07/18/24 Expires: 07/18/25 Sample Method : SOP.T.20.010

Page 3 of 5

R 0

Pesticides

Pesticide	LOD	Units	Action Level	Pass/Fail	Result	Pesticide		LOD	Units	Action Level	Pass/Fail	Result
TOTAL CONTAMINANT LOAD (PESTICIDES)	0.010	ppm	5	PASS	ND	OXAMYL		0.010	ppm	0.5	PASS	ND
TOTAL DIMETHOMORPH	0.010	ppm	0.2	PASS	ND	PACLOBUTRAZOL		0.010	ppm	0.1	PASS	ND
TOTAL PERMETHRIN	0.010	ppm	0.1	PASS	ND	PHOSMET		0.010		0.1	PASS	ND
TOTAL PYRETHRINS	0.010	ppm	0.5	PASS	ND	PIPERONYL BUTOXIDE		0.010		3	PASS	ND
TOTAL SPINETORAM	0.010	ppm	0.2	PASS	ND							
TOTAL SPINOSAD	0.010	ppm	0.1	PASS	ND	PRALLETHRIN		0.010		0.1	PASS	ND
ABAMECTIN B1A	0.010	ppm	0.1	PASS	ND	PROPICONAZOLE		0.010	ppm	0.1	PASS	ND
ACEPHATE	0.010	ppm	0.1	PASS	ND	PROPOXUR		0.010	ppm	0.1	PASS	ND
ACEQUINOCYL	0.010	ppm	0.1	PASS	ND	PYRIDABEN		0.010	ppm	0.2	PASS	ND
ACETAMIPRID	0.010	ppm	0.1	PASS	ND	SPIROMESIFEN		0.010	ppm	0.1	PASS	ND
ALDICARB	0.010	ppm	0.1	PASS	ND	SPIROTETRAMAT		0.010	ppm	0.1	PASS	ND
AZOXYSTROBIN	0.010	ppm	0.1	PASS	ND	SPIROXAMINE		0.010	naa	0.1	PASS	ND
BIFENAZATE	0.010	ppm	0.1	PASS	ND	TEBUCONAZOLE		0.010		0.1	PASS	ND
BIFENTHRIN	0.010	ppm	0.1	PASS	ND	THIACLOPRID		0.010		0.1	PASS	ND
BOSCALID	0.010	ppm	0.1	PASS	ND				1.1.	0.1	PASS	ND
CARBARYL	0.010	ppm	0.5	PASS	ND	THIAMETHOXAM		0.010				
CARBOFURAN	0.010	ppm	0.1	PASS	ND	TRIFLOXYSTROBIN		0.010		0.1	PASS	ND
CHLORANTRANILIPROLE	0.010	ppm	1	PASS	ND	PENTACHLORONITROBENZENE (PC	CNB) *	0.010	PPM	0.15	PASS	ND
CHLORMEQUAT CHLORIDE	0.010	ppm	1	PASS	ND	PARATHION-METHYL *		0.010	PPM	0.1	PASS	ND
CHLORPYRIFOS	0.010	ppm	0.1	PASS	ND	CAPTAN *		0.070	PPM	0.7	PASS	ND
CLOFENTEZINE	0.010	ppm	0.2	PASS	ND	CHLORDANE *		0.010	PPM	0.1	PASS	ND
COUMAPHOS	0.010	ppm	0.1	PASS	ND	CHLORFENAPYR *		0.010	PPM	0.1	PASS	ND
DAMINOZIDE	0.010	ppm	0.1	PASS	ND	CYFLUTHRIN *		0.050	PPM	0.5	PASS	ND
DIAZINON	0.010	ppm	0.1	PASS	ND	CYPERMETHRIN *		0.050	PPM	0.5	PASS	ND
DICHLORVOS	0.010	ppm	0.1	PASS	ND					0.5		
DIMETHOATE	0.010	ppm	0.1	PASS	ND				ion date: 4 15:27:25		Extracted 3621	by:
ETHOPROPHOS	0.010	ppm	0.1	PASS	ND	Analysis Method : SOP.T.30.101.FL				SOP T 40 101 I		
ETOFENPROX	0.010	ppm	0.1	PASS	ND	SOP.T.40.102.FL (Davie)	(ouncorne), oor m		211 2 (Darie), c		e (ourrestric)	,
ETOXAZOLE	0.010	ppm	0.1	PASS	ND	Analytical Batch : DA075292PES				n:07/17/24 13		
FENHEXAMID	0.010	ppm	0.1	PASS	ND	Instrument Used : DA-LCMS-004 (PE	ES)		Batch Date :	07/16/24 10:4	14:44	
FENOXYCARB	0.010	ppm	0.1	PASS	ND	Analyzed Date : N/A						
FENPYROXIMATE	0.010	ppm	0.1	PASS	ND	Dilution : 250 Reagent : 071224.R22; 071024.R08	070024 004. 0710	24 02	7. 062524 00.	1. 071024 006	. 040422.00	
FIPRONIL	0.010	ppm	0.1	PASS	ND	Consumables : 326250IW	, 070924.R04, 0710	JZ4.NJ	7,002524.604	+, 071024.R00), 040423.00	
FLONICAMID	0.010	ppm	0.1	PASS	ND	Pipette : DA-093; DA-094; DA-219						
FLUDIOXONIL	0.010	ppm	0.1	PASS	ND	Testing for agricultural agents is perfo	rmed utilizing Liquid	Chrom	natography Trip	ole-Quadrupole	Mass Spectrom	netry in
HEXYTHIAZOX	0.010	ppm	0.1	PASS	ND	accordance with F.S. Rule 64ER20-39.						
IMAZALIL	0.010		0.1	PASS	ND				on date:		Extracted	by:
IMIDACLOPRID	0.010	ppm	0.4	PASS	ND				15:27:25		3621	
KRESOXIM-METHYL	0.010	ppm	0.1	PASS	ND	Analysis Method : SOP.T.30.151.FL	(Gainesville), SOP.T.					
MALATHION	0.010	ppm	0.2	PASS	ND	Analytical Batch : DA075295VOL Instrument Used : DA-GCMS-001			viewed On :0 tch Date :07			
METALAXYL	0.010	ppm	0.1	PASS	ND	Analyzed Date :07/16/24 19:25:28		DC	iteli bate . 07	10/24 10.40.5	50	
METHIOCARB	0.010	ppm	0.1	PASS	ND	Dilution : 250						
METHOMYL	0.010	ppm	0.1	PASS	ND	Reagent : 070924.R04; 040423.08;	071024.R46; 07102	4.R47				
MEVINPHOS	0.010		0.1	PASS	ND	Consumables : 326250IW; 1472540						
MYCLOBUTANIL	0.010	ppm	0.1	PASS	ND	Pipette : DA-080; DA-146; DA-218						
NALED	0.010	ppm	0.25	PASS	ND	Testing for agricultural agents is perfo accordance with F.S. Rule 64ER20-39.	rmed utilizing Gas Cl	hromat	ography Triple	-Quadrupole M	lass Spectromet	ry in

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LDD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature

07/18/24

Supply Pre-Roll 1g - Bnanas Foster (S) Bananas Foster Matrix : Flower Type: Preroll

PASSED

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Iulio.Chavez@crescolabs.com Sample : DA40715005-009 Harvest/Lot ID: 1001 3428 6430 4669 Batch# : 1001 3428 6430 Sample

4669 Sampled : 07/15/24 Ordered : 07/15/24 Sample Size Received : 26 gram Total Amount : 1000 units Completed : 07/18/24 Expires: 07/18/25 Sample Method : SOP.T.20.010

	Pag	е	4	of	5
--	-----	---	---	----	---

(CF)	Microl	bial			PAS	SED	တို့	Мусо	otoxii	ns			PAS	SED
Analyte		LOD	Units	Result	Pass / Fail	Action Level	Analyte			LOD	Units	Result	Pass / Fail	Action Level
ASPERGILLU	S TERREUS			Not Present	PASS	Level	AFLATOXIN	B2		0.002	ppm	ND	PASS	0.02
ASPERGILLU				Not Present	PASS		AFLATOXIN			0.002	ppm	ND	PASS	0.02
ASPERGILLU	S FUMIGATUS			Not Present	PASS		OCHRATOXI	A		0.002	ppm	ND	PASS	0.02
ASPERGILLU	S FLAVUS			Not Present	PASS		AFLATOXIN	G1		0.002	ppm	ND	PASS	0.02
SALMONELL	A SPECIFIC GEN	E		Not Present	PASS		AFLATOXIN	G2		0.002	ppm	ND	PASS	0.02
ECOLI SHIGE TOTAL YEAS		10	CFU/g	Not Present 1540	PASS PASS	100000	Analyzed by: 3379, 585, 144		eight: 9615g	Extraction da 07/16/24 15:			Extracted 3621	by:
Analyzed by: 4044, 4520, 58	5 1440	Weight:	Extraction		Extracte	d by:	Analysis Metho	od : SOP.T.30.1)1.FL (Gaine:	sville), SOP.T		. (Gainesv		
Analysis Metho	od : SOP.T.40.056 h : DA075259MIC		07/16/24 1 58.FL, SOP.T	.40.209.FL Rev	4531 viewed On 54:03	:07/18/24				Review	wed On : 0 Date : 07/			
Heat Block (55 DA-367 Analyzed Date Dilution : 10	mp Heat Block (5 *C) DA-366,Fisher : 07/17/24 14:45: 324.37; 061324.4 7573003038	r Scientific Iso	otemp Heat B	Block (95*Ċ)			Mycotoxins test	93; DA-094; DA ing utilizing Liqui n F.S. Rule 64ER2	d Chromatogra 0-39.		e-Quadrupol			
Pipette : N/A							[Hg	Heav	у ме	tais			PAS	SED
Analyzed by: 4044, 3621, 58	5, 1440	Weight: 0.929g	Extraction 07/16/24 1		Extracte 4531	d by:	Metal			LOD	Units	Result	Pass /	Action
Analysis Metho	d: SOP.T.40.208	(Gainesville),	SOP.T.40.20)9.FL			-						Fail	Level
	h : DA075260TYN			ewed On : 07/18/			TOTAL CONT ARSENIC	AMINANT LO	AD METALS	0.080	ppm	ND ND	PASS PASS	1.1 0.2
	ed : Incubator (25 : 07/16/24 18:44:		Bato	h Date : 07/16/24	4 07:37:06		CADMIUM			0.020 0.020	ppm ppm	ND	PASS	0.2
Dilution : 10							MERCURY			0.020	ppm	ND	PASS	0.2
	324.37; 061324.4	8; 070324.R3	5				LEAD			0.020	ppm	ND	PASS	0.5
Consumables : Pipette : N/A	N/A						Analyzed by: 1022, 4056, 58	5. 1440	Weight: 0.2413g	Extractio	on date: 4 10:58:53	2	Extracte 4056	ed by:
	mold testing is perfo F.S. Rule 64ER20-3		MPN and tradi	tional culture based	l techniques	s in	Analysis Metho Analytical Bato Instrument Us	od : SOP.T.30.03 h : DA075277F ed : DA-ICPMS-(: 07/16/24 15::	32.FL, SOP.T. IEA)04	.40.082.FL Review	ed On : 07/10	/17/24 09:	06:27	
							Dilution : 50 Reagent : 070 070524.R05 Consumables :	924.R14; 07152 179436; 1204: 51; DA-191; DA	24.R04; 0705 23CH01; 210		524.R02; 0	71524.R0	3; 061724	4.01;

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 07/18/24

..... Supply Pre-Roll 1g - Bnanas Foster (S) Bananas Foster Matrix : Flower Type: Preroll

PASSED

PASSED

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: Julio Chavez@crescolabs.com Sample : DA40715005-009 Harvest/Lot ID: 1001 3428 6430 4669 Batch#:1001 3428 6430

4669 Sampled : 07/15/24 Ordered : 07/15/24

Sample Size Received : 26 gram Total Amount : 1000 units Completed : 07/18/24 Expires: 07/18/25 Sample Method : SOP.T.20.010

Filth/Foreign Material

Page 5 of 5

Analyte Filth and Foreigr	n Material	LOD 0.100	Units %	Result ND	P/F PASS	Action Level	Analyte Moisture Content		LOD 1.00	Units %	Result 9.98	P/F PASS	Action Level
Analyzed by: 1879, 585, 1440	Weig NA	ht:	Extraction N/A	date:	Extra N/A	cted by:		/eight: .495g		Araction d 7/17/24 10			tracted by:
Analysis Method : S Analytical Batch : D Instrument Used : F Analyzed Date : 07/	DA075373FIL Filth/Foreign Mate	rial Micro	oscope		On : 07/17/ e : 07/17/24	/24 11:52:17 4 11:30:50	Analysis Method : SOP.T.40.02 Analytical Batch : DA075312M Instrument Used : DA-003 Moi Analyzed Date : 07/17/24 09:2	401 Disture Ar	nalyzer		Reviewed On Batch Date :		
Dilution : N/A Reagent : N/A Consumables : N/A Pipette : N/A							Dilution : N/A Reagent : 092520.50; 020124 Consumables : N/A Pipette : DA-066	4.02					
Filth and foreign mate technologies in accor				ection utilizi	ng naked eye	and microscope	Moisture Content analysis utilizing	ig loss-on-	drying	technology	in accordance	with F.S. Ru	le 64ER20-39.
\bigcirc	Water A	ctiv	ity		PAS	SSED							

Analyte Water Activity	_	OD .010	Units aw	Result 0.556	P/F PASS	Action Level 0.65
Analyzed by: 4571, 585, 1440	Weight: 0.5351g		traction 0			tracted by: 71
Analysis Method : SOP Analytical Batch : DAO Instrument Used : DA- Analyzed Date : 07/17	75313WAT 028 Rotronic Hyg	Iropal	m	Reviewed Or Batch Date :		
Dilution : N/A Reagent : 051624.01 Consumables : PS-14 Pipette : N/A						

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 07/18/24