

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

SUPPLY

### **Kaycha Labs**

..... Supply Shake 7g - Lmn Bean x Italian Ice (S) Lemon Bean x Italian Ice Matrix: Flower Type: Flower-Cured



PASSED

MISC.

## **Certificate of Analysis COMPLIANCE FOR RETAIL**

### Sample:DA40624001-004 Harvest/Lot ID: 0001 3428 6438 0515 Batch#: 0001 3428 6438 0515 Cultivation Facility: FL - Indiantown (3734) Processing Facility : FL - Indiantown (3734) Source Facility : FL - Indiantown (3734) Seed to Sale# 0001 3428 6438 2815 Batch Date: 06/13/24 Sample Size Received: 35 units Total Amount: 441 units Retail Product Size: 7 gram Retail Serving Size: 7 gram Servings: 1 Ordered: 06/14/24 Sampled: 06/24/24 Completed: 06/27/24 Sampling Method: SOP.T.20.010

Pages 1 of 5

Jun 27, 2024 | Sunnyside 22205 Sw Martin Hwy indiantown, FL, 34956, US



### **SAFETY RESULTS**

| OLIS                                                            |                                                                                                                                                                    |                                                                                                                                                                                |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                       |                                                                                                                       |                                                                                                                       |                                                                                                                       | Mise.                                                                                                                 |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| [                                                               | Hg                                                                                                                                                                 | Ċ,                                                                                                                                                                             | ۍ<br>ډ                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ä                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                       |                                                                                                                       | $\bigcirc$                                                                                                            |                                                                                                                       | Ô                                                                                                                     |
|                                                                 |                                                                                                                                                                    | Microbials<br>PASSED                                                                                                                                                           |                                                                                                                                                                                                                                                              | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Solvents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Filth<br><b>PASSED</b>                                                                                                |                                                                                                                       |                                                                                                                       | Moisture<br>PASSED                                                                                                    | Terpenes<br>TESTED                                                                                                    |
| annabi                                                          | noid                                                                                                                                                               |                                                                                                                                                                                |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                       |                                                                                                                       |                                                                                                                       |                                                                                                                       | PASSED                                                                                                                |
| 20.                                                             | 756%                                                                                                                                                               | -                                                                                                                                                                              |                                                                                                                                                                                                                                                              | ) 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 049%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                       |                                                                                                                       | 324                                                                                                                   | .504%                                                                                                                 | 0                                                                                                                     |
|                                                                 |                                                                                                                                                                    |                                                                                                                                                                                |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                       |                                                                                                                       |                                                                                                                       |                                                                                                                       |                                                                                                                       |
| D9-THC                                                          | THCA 22 966                                                                                                                                                        |                                                                                                                                                                                | CBDA                                                                                                                                                                                                                                                         | D8-THC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CBG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CBGA                                                                                                                  |                                                                                                                       | тнсу                                                                                                                  |                                                                                                                       | свс<br>0.075                                                                                                          |
| 43.05                                                           | 1607.62                                                                                                                                                            | ND                                                                                                                                                                             | 3.99                                                                                                                                                                                                                                                         | 1.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48.93                                                                                                                 | ND                                                                                                                    | ND                                                                                                                    | ND                                                                                                                    | 5.25                                                                                                                  |
| 0.001                                                           | 0.001                                                                                                                                                              | 0.001                                                                                                                                                                          | 0.001                                                                                                                                                                                                                                                        | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.001                                                                                                                 | 0.001                                                                                                                 | 0.001                                                                                                                 | 0.001                                                                                                                 | 0.001                                                                                                                 |
| %                                                               | %                                                                                                                                                                  | %                                                                                                                                                                              | %                                                                                                                                                                                                                                                            | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %                                                                                                                     | %                                                                                                                     | %                                                                                                                     | %                                                                                                                     | %                                                                                                                     |
| 40                                                              |                                                                                                                                                                    |                                                                                                                                                                                |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                       |                                                                                                                       |                                                                                                                       |                                                                                                                       |                                                                                                                       |
| OP.T.40.031, SOP.T<br>A074394POT<br>DA-LC-002<br>25/24 12:17:00 | T.30.031                                                                                                                                                           |                                                                                                                                                                                |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                       |                                                                                                                       |                                                                                                                       |                                                                                                                       |                                                                                                                       |
|                                                                 |                                                                                                                                                                    |                                                                                                                                                                                |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                       |                                                                                                                       |                                                                                                                       |                                                                                                                       |                                                                                                                       |
|                                                                 | неачу<br>ря:<br>неачу<br>ря:<br>аппаbi<br>Тоtаl Т<br>20.<br>Тоtаl Т<br>20.<br>Тоtаl Т<br>20.<br>Соба<br>4000<br>ОР. Т. 40.031, SOF:<br>4000<br>ОР. Т. 40.031, SOF: | Heavy Metals<br>PASSED<br>Annabinoid<br>Total THC<br>20.7566<br>Total THC<br>20.7566<br>Cotal THC/Container :<br>D9-THC<br>0.615 22.966<br>43.05 1607.62<br>0.001 0.001<br>% % | Hg   Microbials     Heavy Metals   Microbials     PASSED   Microbials     Annabinoid   Assect     Total THC   20.7566%     20.7566%   Destrict     Destrict   22.966     Association   ND     0.615   22.966     43.05   1607.62     0.001   0.001     %   % | Heavy Metals<br>PASSED Microbials<br>Microbials Mycotoxi<br>PASSED   annabinoid Total THC<br>20.7566% Image: Comparison of the comparis | Hg Image: Microbials PASSED Microbials | $ \begin{array}{c} \hline \\ \hline $ |

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 54-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

#### **Vivian Celestino** Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 06/27/24



..... Supply Shake 7g - Lmn Bean x Italian Ice (S) Lemon Bean x Italian Ice Matrix : Flower Type: Flower-Cured



PASSED

TESTED

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

# **Certificate of Analysis**

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: ienna.mlsna@crescolabs.com Sample : DA40624001-004 Harvest/Lot ID: 0001 3428 6438 0515 Batch#:0001 3428 6438 0515

Sampled : 06/24/24 Ordered : 06/24/24

Sample Size Received : 35 units Total Amount : 441 units Completed : 06/27/24 Expires: 06/27/25 Sample Method : SOP.T.20.010

Page 2 of 5

### Terpenes

| Terpenes                                                                                                                                                      | LOD<br>(%)                                                                    | mg/uni                                       | t %                                          | Result (%) | Terpenes                                                        | LOD<br>(%)                  | mg/unit          | %            | Result (%)                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|------------|-----------------------------------------------------------------|-----------------------------|------------------|--------------|---------------------------------------------------|
| OTAL TERPENES                                                                                                                                                 | 0.007                                                                         | 73.43                                        | 1.049                                        |            | VALENCENE                                                       | 0.007                       | ND               | ND           |                                                   |
| TA-CARYOPHYLLENE                                                                                                                                              | 0.007                                                                         | 24.92                                        | 0.356                                        |            | ALPHA-CEDRENE                                                   | 0.005                       | ND               | ND           |                                                   |
| LPHA-HUMULENE                                                                                                                                                 | 0.007                                                                         | 8.05                                         | 0.115                                        |            | ALPHA-PHELLANDRENE                                              | 0.007                       | ND               | ND           |                                                   |
| MONENE                                                                                                                                                        | 0.007                                                                         | 7.91                                         | 0.113                                        |            | ALPHA-TERPINENE                                                 | 0.007                       | ND               | ND           |                                                   |
| ALOOL                                                                                                                                                         | 0.007                                                                         | 7.84                                         | 0.112                                        |            | ALPHA-TERPINOLENE                                               | 0.007                       | ND               | ND           |                                                   |
| TA-MYRCENE                                                                                                                                                    | 0.007                                                                         | 7.14                                         | 0.102                                        |            | CIS-NEROLIDOL                                                   | 0.003                       | ND               | ND           |                                                   |
| PHA-BISABOLOL                                                                                                                                                 | 0.007                                                                         | 4.06                                         | 0.058                                        |            | GAMMA-TERPINENE                                                 | 0.007                       | ND               | ND           |                                                   |
| PHA-TERPINEOL                                                                                                                                                 | 0.007                                                                         | 3.15                                         | 0.045                                        |            | TRANS-NEROLIDOL                                                 | 0.005                       | ND               | ND           |                                                   |
| NCHYL ALCOHOL                                                                                                                                                 | 0.007                                                                         | 3.08                                         | 0.044                                        |            | Analyzed by:                                                    | Weight:                     |                  | tion date:   | Extracted by:                                     |
| TA-PINENE                                                                                                                                                     | 0.007                                                                         | 2.80                                         | 0.040                                        |            | 4451, 3605, 585, 1440                                           | 1.0793g                     | 06/25/           | 24 11:42:26  | 4451                                              |
| RNESENE                                                                                                                                                       | 0.007                                                                         | 2.59                                         | 0.037                                        |            | Analysis Method : SOP.T.30.061A.FL, SO                          | OP.T.40.061A.FL             |                  |              | 2021.00.10.20                                     |
| PHA-PINENE                                                                                                                                                    | 0.007                                                                         | 1.89                                         | 0.027                                        |            | Analytical Batch : DA074419TER<br>Instrument Used : DA-GCMS-009 |                             |                  |              | /26/24 09:48:58<br>5/24 09:51:47                  |
| CARENE                                                                                                                                                        | 0.007                                                                         | ND                                           | ND                                           |            | Analyzed Date : 06/25/24 11:42:58                               |                             | Daten            | Date: 00/2.  | 5/24 05.51.47                                     |
| RNEOL                                                                                                                                                         | 0.013                                                                         | ND                                           | ND                                           |            | Dilution : 10                                                   |                             |                  |              |                                                   |
| MPHENE                                                                                                                                                        | 0.007                                                                         | ND                                           | ND                                           |            | Reagent : 022224.06                                             |                             |                  |              |                                                   |
| MPHOR                                                                                                                                                         | 0.007                                                                         | ND                                           | ND                                           |            | Consumables : 947.109; 230613-634-D                             | ; CE0123; 280670723         |                  |              |                                                   |
| RYOPHYLLENE OXIDE                                                                                                                                             | 0.007                                                                         | ND                                           | ND                                           |            | Pipette : DA-063                                                |                             |                  |              |                                                   |
| DROL                                                                                                                                                          | 0.007                                                                         | ND                                           | ND                                           |            | Terpenoid testing is performed utilizing Gas                    | Chromatography Mass Spectro | metry. For all I | lower sample | es, the Total Terpenes % is dry-weight corrected. |
|                                                                                                                                                               | 0.007                                                                         | ND                                           | ND                                           |            |                                                                 |                             |                  |              |                                                   |
| CALYPTOL                                                                                                                                                      |                                                                               |                                              |                                              |            |                                                                 |                             |                  |              |                                                   |
|                                                                                                                                                               | 0.007                                                                         | ND                                           | ND                                           |            |                                                                 |                             |                  |              |                                                   |
| NCHONE                                                                                                                                                        |                                                                               | ND<br>ND                                     | ND<br>ND                                     |            |                                                                 |                             |                  |              |                                                   |
| RANIOL                                                                                                                                                        | 0.007                                                                         |                                              |                                              |            |                                                                 |                             |                  |              |                                                   |
| NCHONE<br>RANIOL<br>RANYL ACETATE                                                                                                                             | 0.007                                                                         | ND                                           | ND                                           |            |                                                                 |                             |                  |              |                                                   |
| NCHONE<br>RANIOL<br>RANYL ACETATE<br>IAIOL                                                                                                                    | 0.007<br>0.007<br>0.007                                                       | ND<br>ND                                     | ND<br>ND                                     |            |                                                                 |                             |                  |              |                                                   |
| NCHONE<br>RANIOL<br>RANYL ACETATE<br>JAIOL<br>XAHYDROTHYMOL                                                                                                   | 0.007<br>0.007<br>0.007<br>0.007                                              | ND<br>ND<br>ND                               | ND<br>ND<br>ND                               |            |                                                                 |                             |                  |              |                                                   |
| NCHONE<br>RANIOL<br>RANYL ACETATE<br>IAIOL<br>XAHYDROTHYMOL<br>DBORNEOL                                                                                       | 0.007<br>0.007<br>0.007<br>0.007<br>0.007                                     | ND<br>ND<br>ND<br>ND                         | ND<br>ND<br>ND<br>ND                         |            |                                                                 |                             |                  |              |                                                   |
| NCHONE<br>RANIOL<br>RANIOL<br>AIOL<br>XAHYDROTHYMOL<br>DBORDREOL<br>DPULEGOL                                                                                  | 0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007                            | ND<br>ND<br>ND<br>ND                         | ND<br>ND<br>ND<br>ND                         |            |                                                                 |                             |                  |              |                                                   |
| NCHONE<br>RANIOL<br>RANYL ACETATE<br>AIOL<br>XAHYDROTHYMOL<br>BØORNEOL<br>PULEGOL<br>ROL                                                                      | 0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007                   | ND<br>ND<br>ND<br>ND<br>ND                   | ND<br>ND<br>ND<br>ND<br>ND                   |            |                                                                 |                             |                  |              |                                                   |
| NCHONE<br>RANIOL<br>RANIOLACETATE<br>JAIOL<br>XXAHYDROTHYMOL<br>D90LEGOL<br>JROL<br>JROL                                                                      | 0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007                   | ND<br>ND<br>ND<br>ND<br>ND<br>ND             | ND<br>ND<br>ND<br>ND<br>ND<br>ND             |            |                                                                 |                             |                  |              |                                                   |
| ENCHONE<br>ERANIOL<br>ERANIOL<br>EXANTYACETATE<br>UAIOL<br>DEGORNEOL<br>OPULEGOL<br>EROL<br>CIMENE<br>ULEGONE                                                 | 0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007 | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND       |            |                                                                 |                             |                  |              |                                                   |
| UCALYPTOL<br>ERCHONE<br>ERCHONE<br>ERCHONE<br>ERCHONE<br>UNIOL<br>LEXAHYDROTHYMOL<br>SOBORNEOL<br>SOPULEGOL<br>LEROL<br>ULEGONE<br>ADINEME<br>ADINEME HYDRATE | 0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007 | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND |            |                                                                 |                             |                  |              |                                                   |

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

#### **Vivian Celestino** Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 06/27/24



Supply Shake 7g - Lmn Bean x Italian Ice (S) Lemon Bean x Italian Ice Matrix : Flower Type: Flower-Cured



4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

# **Certificate of Analysis**

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: ienna.mlsna@crescolabs.com Sample : DA40624001-004 Harvest/Lot ID: 0001 3428 6438 0515 Batch# : 0001 3428 6438 Sample

0515 Sampled : 06/24/24 Ordered : 06/24/24 Sample Size Received : 35 units Total Amount : 441 units Completed : 06/27/24 Expires: 06/27/25 Sample Method : SOP.T.20.010

Page 3 of 5

R 0

### Pesticides

| Pesticide                           | LOD   | Units | Action<br>Level | Pass/Fail | Result | Pesticide                                                                            | LOD                    | Units                            | Action<br>Level | Pass/Fail         | Result   |
|-------------------------------------|-------|-------|-----------------|-----------|--------|--------------------------------------------------------------------------------------|------------------------|----------------------------------|-----------------|-------------------|----------|
| TOTAL CONTAMINANT LOAD (PESTICIDES) | 0.010 | ppm   | 5               | PASS      | ND     | OXAMYL                                                                               | 0.010                  | ppm                              | 0.5             | PASS              | ND       |
| TOTAL DIMETHOMORPH                  | 0.010 | ppm   | 0.2             | PASS      | ND     | PACLOBUTRAZOL                                                                        | 0.010                  | ppm                              | 0.1             | PASS              | ND       |
| TOTAL PERMETHRIN                    | 0.010 | ppm   | 0.1             | PASS      | ND     | PHOSMET                                                                              | 0.010                  | ppm                              | 0.1             | PASS              | ND       |
| TOTAL PYRETHRINS                    | 0.010 | ppm   | 0.5             | PASS      | ND     | PIPERONYL BUTOXIDE                                                                   |                        | ppm                              | 3               | PASS              | ND       |
| TOTAL SPINETORAM                    | 0.010 | ppm   | 0.2             | PASS      | ND     |                                                                                      |                        | ppm                              | 0.1             | PASS              | ND       |
| TOTAL SPINOSAD                      | 0.010 | ppm   | 0.1             | PASS      | ND     | PRALLETHRIN                                                                          |                        |                                  |                 |                   |          |
| ABAMECTIN B1A                       | 0.010 | ppm   | 0.1             | PASS      | ND     | PROPICONAZOLE                                                                        |                        | ppm                              | 0.1             | PASS              | ND       |
| ACEPHATE                            | 0.010 | ppm   | 0.1             | PASS      | ND     | PROPOXUR                                                                             |                        | ppm                              | 0.1             | PASS              | ND       |
| ACEQUINOCYL                         | 0.010 | ppm   | 0.1             | PASS      | ND     | PYRIDABEN                                                                            | 0.010                  | ppm                              | 0.2             | PASS              | ND       |
| ACETAMIPRID                         | 0.010 | ppm   | 0.1             | PASS      | ND     | SPIROMESIFEN                                                                         | 0.010                  | ppm                              | 0.1             | PASS              | ND       |
| ALDICARB                            | 0.010 | ppm   | 0.1             | PASS      | ND     | SPIROTETRAMAT                                                                        | 0.010                  | ppm                              | 0.1             | PASS              | ND       |
| AZOXYSTROBIN                        | 0.010 | ppm   | 0.1             | PASS      | ND     | SPIROXAMINE                                                                          | 0.010                  | ppm                              | 0.1             | PASS              | ND       |
| BIFENAZATE                          | 0.010 | ppm   | 0.1             | PASS      | ND     | TEBUCONAZOLE                                                                         | 0.010                  | ppm                              | 0.1             | PASS              | ND       |
| BIFENTHRIN                          | 0.010 | ppm   | 0.1             | PASS      | ND     | THIACLOPRID                                                                          |                        | ppm                              | 0.1             | PASS              | ND       |
| BOSCALID                            | 0.010 | ppm   | 0.1             | PASS      | ND     |                                                                                      |                        | ppm                              | 0.5             | PASS              | ND       |
| CARBARYL                            | 0.010 | ppm   | 0.5             | PASS      | ND     | THIAMETHOXAM                                                                         |                        |                                  |                 | PASS              |          |
| CARBOFURAN                          | 0.010 | ppm   | 0.1             | PASS      | ND     | TRIFLOXYSTROBIN                                                                      |                        | ppm                              | 0.1             |                   | ND       |
| CHLORANTRANILIPROLE                 | 0.010 | ppm   | 1               | PASS      | ND     | PENTACHLORONITROBENZENE (PCNB)                                                       |                        |                                  | 0.15            | PASS              | ND       |
| CHLORMEQUAT CHLORIDE                | 0.010 | ppm   | 1               | PASS      | ND     | PARATHION-METHYL *                                                                   | 0.010                  | PPM                              | 0.1             | PASS              | ND       |
| CHLORPYRIFOS                        | 0.010 | ppm   | 0.1             | PASS      | ND     | CAPTAN *                                                                             | 0.070                  | PPM                              | 0.7             | PASS              | ND       |
| CLOFENTEZINE                        | 0.010 | ppm   | 0.2             | PASS      | ND     | CHLORDANE *                                                                          | 0.010                  | PPM                              | 0.1             | PASS              | ND       |
| COUMAPHOS                           | 0.010 | ppm   | 0.1             | PASS      | ND     | CHLORFENAPYR *                                                                       | 0.010                  | PPM                              | 0.1             | PASS              | ND       |
| DAMINOZIDE                          | 0.010 | ppm   | 0.1             | PASS      | ND     | CYFLUTHRIN *                                                                         | 0.050                  | PPM                              | 0.5             | PASS              | ND       |
| DIAZINON                            | 0.010 | ppm   | 0.1             | PASS      | ND     | CYPERMETHRIN *                                                                       | 0.050                  |                                  | 0.5             | PASS              | ND       |
| DICHLORVOS                          | 0.010 | ppm   | 0.1             | PASS      | ND     |                                                                                      |                        |                                  | 0.0             |                   |          |
| DIMETHOATE                          | 0.010 | ppm   | 0.1             | PASS      | ND     | Analyzed by: Weig<br>3379, 585, 1440 0.984                                           |                        | tion date:<br>24 15:32:34        |                 | Extracted<br>3379 | by:      |
| ETHOPROPHOS                         | 0.010 | ppm   | 0.1             | PASS      | ND     | Analysis Method : SOP.T.30.101.FL (Gain                                              |                        |                                  | 50P T 40 101 F  |                   |          |
| ETOFENPROX                          | 0.010 | ppm   | 0.1             | PASS      | ND     | SOP.T.40.102.FL (Davie)                                                              |                        | ,211 2 (20110)) 0                |                 | E (Guillesville)  | ,        |
| ETOXAZOLE                           | 0.010 | ppm   | 0.1             | PASS      | ND     | Analytical Batch : DA074430PES                                                       |                        | Reviewed O                       | n:06/27/24 09   | 9:31:28           |          |
| FENHEXAMID                          | 0.010 | ppm   | 0.1             | PASS      | ND     | Instrument Used : DA-LCMS-004 (PES)                                                  |                        | Batch Date :                     | 06/25/24 10:2   | 20:54             |          |
| FENOXYCARB                          | 0.010 | ppm   | 0.1             | PASS      | ND     | Analyzed Date : 06/25/24 15:40:29                                                    |                        |                                  |                 |                   |          |
| FENPYROXIMATE                       | 0.010 | ppm   | 0.1             | PASS      | ND     | Dilution : 250<br>Reagent : 062424.R01: 061924.R12: 062                              | 424 P04- 061024 P3     | 0. 052024 02                     | 1. 061024 000   | 040422.00         |          |
| FIPRONIL                            | 0.010 | ppm   | 0.1             | PASS      | ND     | Consumables : 326250IW                                                               | 424.604, 001924.63     | bo, UJZ924.NJ.                   | 1, 001924.R09   | , 040423.00       |          |
| FLONICAMID                          | 0.010 | ppm   | 0.1             | PASS      | ND     | Pipette : DA-093; DA-094; DA-219                                                     |                        |                                  |                 |                   |          |
| FLUDIOXONIL                         | 0.010 | ppm   | 0.1             | PASS      | ND     | Testing for agricultural agents is performed                                         | utilizing Liquid Chror | natography Trip                  | ole-Quadrupole  | Mass Spectrom     | netry in |
| HEXYTHIAZOX                         | 0.010 | ppm   | 0.1             | PASS      | ND     | accordance with F.S. Rule 64ER20-39.                                                 |                        |                                  |                 |                   |          |
| IMAZALIL                            | 0.010 | ppm   | 0.1             | PASS      | ND     | Analyzed by: Weight                                                                  |                        | ion date:                        |                 | Extracted         | by:      |
| IMIDACLOPRID                        | 0.010 | ppm   | 0.4             | PASS      | ND     | <b>450, 585, 1440</b> 0.9843                                                         |                        | 4 15:32:34                       |                 | 3379              |          |
| KRESOXIM-METHYL                     | 0.010 | ppm   | 0.1             | PASS      | ND     | Analysis Method : SOP.T.30.151.FL (Gain                                              |                        |                                  |                 |                   |          |
| MALATHION                           | 0.010 | ppm   | 0.2             | PASS      | ND     | Analytical Batch : DA074432VOL<br>Instrument Used : DA-GCMS-001                      |                        | eviewed On : 0<br>atch Date : 06 |                 |                   |          |
| METALAXYL                           | 0.010 | ppm   | 0.1             | PASS      | ND     | Analyzed Date :06/25/24 18:49:00                                                     | D                      | atch Date : 00                   | /23/24 10.22.2  | 22                |          |
| METHIOCARB                          | 0.010 | ppm   | 0.1             | PASS      | ND     | Dilution : 250                                                                       |                        |                                  |                 |                   |          |
| METHOMYL                            | 0.010 | ppm   | 0.1             | PASS      | ND     | Reagent : 062424.R04; 040423.08; 0603                                                | 24.R01: 060324.R02     |                                  |                 |                   |          |
| MEVINPHOS                           | 0.010 | ppm   | 0.1             | PASS      | ND     | Consumables : 326250IW; 14725401                                                     |                        |                                  |                 |                   |          |
| MYCLOBUTANIL                        | 0.010 | ppm   | 0.1             | PASS      | ND     | Pipette : DA-080; DA-146; DA-218                                                     |                        |                                  |                 |                   |          |
| NALED                               | 0.010 | ppm   | 0.25            | PASS      | ND     | Testing for agricultural agents is performed<br>accordance with F.S. Rule 64ER20-39. | utilizing Gas Chroma   | tography Triple                  | -Quadrupole M   | lass Spectromet   | ry in    |

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

### Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 06/27/24

### PASSED

PASSED



..... Supply Shake 7g - Lmn Bean x Italian Ice (S) Lemon Bean x Italian Ice Matrix : Flower Type: Flower-Cured



PASSED

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

# **Certificate of Analysis**

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: ienna.mlsna@crescolabs.com Sample : DA40624001-004 Harvest/Lot ID: 0001 3428 6438 0515 Batch#:0001 3428 6438

0515 Sampled : 06/24/24 Ordered : 06/24/24 Sample Size Received : 35 units Total Amount : 441 units Completed : 06/27/24 Expires: 06/27/25 Sample Method : SOP.T.20.010

Page 4 of 5

| Ċ,                                       | Microb                                                                      | oial              |                                |                                               | PAS                           | SED             | သို့                                                                                | Му                       | /cotox                         | ins                   |                              |              | PAS                           | SED             |
|------------------------------------------|-----------------------------------------------------------------------------|-------------------|--------------------------------|-----------------------------------------------|-------------------------------|-----------------|-------------------------------------------------------------------------------------|--------------------------|--------------------------------|-----------------------|------------------------------|--------------|-------------------------------|-----------------|
| Analyte                                  |                                                                             | LOD               | Units                          | Result                                        | Pass /<br>Fail                | Action<br>Level | Analyte                                                                             |                          |                                | LOD                   | Units                        | Result       | Pass /<br>Fail                | Action<br>Level |
| ASPERGILLU                               | S TERREUS                                                                   |                   |                                | Not Present                                   | PASS                          | Level           | AFLATOXIN I                                                                         | B2                       |                                | 0.00                  | 2 ppm                        | ND           | PASS                          | 0.02            |
| ASPERGILLU                               |                                                                             |                   |                                | Not Present                                   | PASS                          |                 | AFLATOXIN I                                                                         |                          |                                | 0.00                  |                              | ND           | PASS                          | 0.02            |
| ASPERGILLU                               | S FUMIGATUS                                                                 |                   |                                | Not Present                                   | PASS                          |                 | OCHRATOXI                                                                           | A                        |                                | 0.00                  | 2 ppm                        | ND           | PASS                          | 0.02            |
| ASPERGILLU                               | 5 FLAVUS                                                                    |                   |                                | Not Present                                   | PASS                          |                 | AFLATOXIN                                                                           | G1                       |                                | 0.00                  | 2 ppm                        | ND           | PASS                          | 0.02            |
| SALMONELLA                               | SPECIFIC GENE                                                               | E                 |                                | Not Present                                   | PASS                          |                 | AFLATOXIN                                                                           | G2                       |                                | 0.00                  |                              | ND           | PASS                          | 0.02            |
| ECOLI SHIGE                              | LLA                                                                         |                   |                                | Not Present                                   | PASS                          |                 | Analyzed by:                                                                        |                          | Weight:                        | Extraction            | date:                        |              | Extracted                     | 1 by:           |
| TOTAL YEAS                               | FAND MOLD                                                                   | 10                | CFU/g                          | 80                                            | PASS                          | 100000          |                                                                                     | 0                        | 0.9843g                        | 06/25/24              |                              |              | 3379                          | i by.           |
| Analyzed by:<br>3390, 4531, 58           | 5, 1440                                                                     | Weight:<br>0.968g | Extraction 0<br>06/25/24 12    |                                               | Extracte<br>4520              | ed by:          | Analysis Metho<br>SOP.T.30.102.                                                     |                          |                                |                       | .T.40.101.F                  | L (Gainesvi  | ille),                        |                 |
|                                          | <b>d :</b> SOP.T.40.0560<br><b>h :</b> DA074409MIC                          | C, SOP.T.40.0     | 58.FL, SOP.T                   |                                               | <b>d On :</b> 06/2            | 6/24            | Analytical Bate<br>Instrument Use<br>Analyzed Date                                  | ed:N/A                   |                                |                       | iewed On : (<br>ch Date : 06 |              |                               |                 |
| DA-021<br>Analyzed Date<br>Dilution : 10 | A-049,Fisher Scier<br>: 06/25/24 13:38:4<br>:24.22; 061324.55<br>7574002060 | 40                |                                |                                               |                               |                 | 040423.08<br>Consumables :<br>Pipette : DA-09<br>Mycotoxins test<br>accordance with | 93; DA-09                | 4; DA-219<br>g Liquid Chromate | ography with Tr       | ple-Quadrupo                 | ble Mass Spe | ctrometry                     | in              |
| Analyzed by:<br>3390, 585, 144           | Weigl<br>0 0.968                                                            |                   | raction date:<br>25/24 12:08:1 |                                               | <b>xtracted b</b><br>520,3390 | y:              | Hg                                                                                  | Не                       | avy M                          | etals                 |                              |              | PAS                           | SED             |
| Analytical Batc                          | d : SOP.T.40.208<br>h : DA074410TYM<br>d : Incubator (25*                   |                   | Revi                           | 9.FL<br>ewed On : 06/27/<br>h Date : 06/25/24 |                               |                 | Metal                                                                               |                          |                                | LOD                   | Units                        | Result       | Pass /<br>Fail                | Action<br>Level |
|                                          | : 06/25/24 13:41:                                                           |                   | Date                           | <b>Date</b> : 00/23/2                         | + 05.10.50                    | ,               | TOTAL CONT                                                                          |                          | T LOAD META                    | LS 0.08               | ) ppm                        | ND           | PASS                          | 1.1             |
| Dilution : 10                            |                                                                             |                   |                                |                                               |                               |                 | ARSENIC                                                                             |                          |                                | 0.02                  |                              | ND           | PASS                          | 0.2             |
|                                          | 24.22; 061324.55                                                            | 5; 060524.R5      | 3                              |                                               |                               |                 | CADMIUM                                                                             |                          |                                | 0.02                  |                              | ND           | PASS                          | 0.2             |
| Consumables :                            | N/A                                                                         |                   |                                |                                               |                               |                 | MERCURY                                                                             |                          |                                | 0.02                  |                              | ND           | PASS                          | 0.2             |
| Pipette : N/A                            |                                                                             |                   |                                |                                               |                               |                 | LEAD                                                                                |                          |                                | 0.02                  | ) ppm                        | <0.100       | PASS                          | 0.5             |
|                                          | nold testing is perfo<br>F.S. Rule 64ER20-39                                |                   | MPN and tradit                 | ional culture based                           | techniques                    | s in            | Analyzed by:<br>1022, 585, 144                                                      | 0                        | Weight:<br>0.2409g             | Extraction 06/25/24 1 |                              |              | <b>ctracted I</b><br>807,4056 |                 |
|                                          |                                                                             |                   |                                |                                               |                               |                 | Analysis Metho<br>Analytical Bato<br>Instrument Uso<br>Analyzed Date                | :h : DA074<br>ed : DA-IC | 444HEA<br>PMS-004              | Revie                 | wed On : 06<br>Date : 06/2   |              |                               |                 |
|                                          |                                                                             |                   |                                |                                               |                               |                 | Dilution : 50<br>Reagent : 0612<br>060524.R41                                       |                          | 062424.R09; 06                 |                       | 2424.R07;                    | 062424.R0    | 8; 06172                      | 4.01;           |

Consumables : 179436; 120423CH01; 210508058

Pipette : DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

#### **Vivian Celestino** Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 06/27/24



..... Supply Shake 7g - Lmn Bean x Italian Ice (S) Lemon Bean x Italian Ice Matrix : Flower Type: Flower-Cured



4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

# **Certificate of Analysis**

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: ienna mlsna@crescolabs.com Sample : DA40624001-004 Harvest/Lot ID: 0001 3428 6438 0515 Batch#:0001 3428 6438

Sampled : 06/24/24 Ordered : 06/24/24 Sample Size Received : 35 units Total Amount : 441 units Completed : 06/27/24 Expires: 06/27/25 Sample Method : SOP.T.20.010



Filth/Foreign **Material** 





PASSED

PASSED

Page 5 of 5

| Analyte<br>Filth and Foreign Material                                                                                              | <b>LOD</b><br>0.100   | Units<br>%        | <b>Result</b><br>ND | P/F<br>PASS                        | Action Level              | Analyte<br>Moisture Content                                                                          | <b>LOD</b><br>1.00 | Units<br>%                         | <b>Result</b><br>13.94       | P/F<br>PASS  | Action Level  |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|---------------------|------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------|--------------------|------------------------------------|------------------------------|--------------|---------------|
| Analyzed by:<br>1879, 585, 1440                                                                                                    | Weight:<br>NA         | Extraction<br>N/A | date:               | <b>Extra</b><br>N/A                | cted by:                  | Analyzed by:   Weigh     4531, 585, 1440   0.503                                                     |                    | <b>Extraction</b> 0<br>06/25/24 14 |                              |              | tracted by:   |
| Analysis Method : SOP.T.40.09<br>Analytical Batch : DA074504FI<br>Instrument Used : Filth/Foreigr<br>Analyzed Date : 06/26/24 15:3 | L<br>n Material Micro | oscope            |                     | <b>On :</b> 06/26/<br>e : 06/26/24 | 24 21:34:05<br>4 15:22:39 | Analysis Method : SOP.T.40.021<br>Analytical Batch : DA074416MOI<br>Instrument Used : DA-003 Moistur |                    |                                    | 09:2<br>Moisture <b>Batc</b> |              | , .,          |
| Dilution : N/A<br>Reagent : N/A                                                                                                    |                       |                   |                     |                                    |                           | Analyzer, DA-263 Moisture Analyse<br>Analyzed Date : 06/25/24 14:23:1                                |                    | Moisture                           | Analyser                     |              |               |
| Consumables : N/A<br>Pipette : N/A                                                                                                 |                       |                   |                     |                                    |                           | Dilution : N/A<br>Reagent : 092520.50; 020124.02                                                     |                    |                                    |                              |              |               |
| Filth and foreign material inspection technologies in accordance with F                                                            |                       |                   | ection utilizi      | ng naked eye                       | and microscope            | Consumables : N/A<br>Pipette : DA-066                                                                |                    |                                    |                              |              |               |
| Wate                                                                                                                               | r Activ               | ity               |                     | PAS                                | SSED                      | Moisture Content analysis utilizing los                                                              | -on-drying         | technology                         | in accordance                | with F.S. Ru | le 64ER20-39. |
| Analyte                                                                                                                            | LOD                   | Units             | Result              | P/F                                | Action Level              |                                                                                                      |                    |                                    |                              |              |               |

| Water Activity                                                                                       | _                            | .0 <b>D</b> | aw                      | 0.532                       | P/F<br>PASS | 0.65                  |  |  |
|------------------------------------------------------------------------------------------------------|------------------------------|-------------|-------------------------|-----------------------------|-------------|-----------------------|--|--|
| Analyzed by:<br>4531, 585, 1440                                                                      | <b>Weight:</b><br>0.8533g    |             | traction (<br>)/25/24 1 |                             |             | Extracted by:<br>4531 |  |  |
| Analysis Method : SOP.<br>Analytical Batch : DAO<br>Instrument Used : DA-0<br>Analyzed Date : 06/25/ | 74417WAT<br>)28 Rotronic Hyg | gropalı     | m                       | Reviewed Or<br>Batch Date : |             |                       |  |  |
| Dilution : N/A<br>Reagent : 051624.01<br>Consumables : PS-14<br>Pipette : N/A                        |                              |             |                         |                             |             |                       |  |  |

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

#### **Vivian Celestino** Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 06/27/24