

Kaycha Labs

Supply Shake 7g - Bsctti Mnt Shrbt (I) Biscotti Mint Sherbet (I)

Matrix: Flower Type: Flower-Cured

Certificate of Analysis

COMPLIANCE FOR RETAIL

Sample:DA40409007-024

Harvest/Lot ID: 2063 9069 0001 7121

Batch#: 2063 9069 0001 7121

Cultivation Facility: FL - Indiantown (3734) Processing Facility: FL - Indiantown (3734)

Source Facility: FL - Indiantown (3734) Seed to Sale# 2063 9069 0001 7145

Batch Date: 04/02/24

Sample Size Received: 35 gram Total Amount: 685.00 units Retail Product Size: 7 gram

> Retail Serving Size: 7 gram Servings: 1

> > Sampled: 04/09/24

Completed: 04/12/24

Ordered: 04/08/24

PASSED

Sampling Method: SOP.T.20.010

Apr 12, 2024 | Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US

Pages 1 of 5

SAFETY RESULTS

Pesticides **PASSED**

Heavy Metals PASSED

Microbials **PASSED**

Mycotoxins **PASSED**

Residuals Solvents **NOT TESTED**

Filth **PASSED**

Water Activity **PASSED**

Moisture **PASSED**

PASSED

Cannabinoid

Total THC

Total THC/Container: 1813.00 mg

Total CBD 0.064%

Total CBD/Container: 4.48 mg

Total Cannabinoids

Total Cannabinoids/Container: 2139.06 mg

D9-THC THCA CBD CBDA D8-THC CBG CBGA CBN THCV CBDV CBC 0.681 28.757 ND 0.073 0.025 0.082 0.884 0.016 ND ND 0.040 ND 0.040 ND 0.001 0	0.681 28.757 ND 0.073 0.025 0.082 0.884 0.016 ND ND 0.040 0.	alyzed by:	1440			Weight:		Extraction date:				Extracted by:	
0.681 28.757 ND 0.073 0.025 0.082 0.884 0.016 ND ND 0.040 nit 47.67 2012.99 ND 5.11 1.75 5.74 61.88 1.12 ND ND 2.80	0.681 28.757 ND 0.073 0.025 0.082 0.884 0.016 ND ND 0.040 (g/unit 47.67 2012.99 ND 5.11 1.75 5.74 61.88 1.12 ND ND 2.80		%	%	%	%	%	%	%	%	%	%	%
0.681 28.757 ND 0.073 0.025 0.082 0.884 0.016 ND ND 0.040	0.681 28.757 ND 0.073 0.025 0.082 0.884 0.016 ND ND 0.040	D	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
		g/unit	47.67	2012.99	ND	5.11	1.75	5.74	61.88	1.12	ND	ND	2.80
D9-THC THCA CBD CBDA D8-THC CBG CBGA CBN THCV CBDV CBC	D9-THC THCA CBD CBDA D8-THC CBG CBGA CBN THCV CBDV CBC		0.681	28.757	ND	0.073	0.025	0.082	0.884	0.016	ND	ND	0.040
			D9-THC	THCA	CBD	CBDA	D8-THC	CBG	CBGA	CBN	тнсу	CBDV	СВС

Analysis Method: SOP.T.40.031, SOP.T.30.031 Analytical Batch : DA071422POT

Instrument Used: DA-LC-002 Analyzed Date: 04/09/24 15:21:20

Dilution: 400

Reagent: 032924.R01; 060723.24; 030824.R01 Consumables: 947.109; 280670723; CE0123; R1KB14270 Pipette: DA-079; DA-108; DA-078

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39

Reviewed On: 04/11/24 07:10:01 Batch Date: 04/09/24 13:43:51

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for

pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs

Supply Shake 7g - Bsctti Mnt Shrbt (I) Biscotti Mint Sherbet (I)

Matrix: Flower

Type: Flower-Cured

Certificate of Analysis

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: renee.revna@crescolabs.com Sample : DA40409007-024 Harvest/Lot ID: 2063 9069 0001 7121

Batch#: 2063 9069 0001

Sampled: 04/09/24 Ordered: 04/09/24

Sample Size Received: 35 gram Total Amount : 685.00 units Completed: 04/12/24 Expires: 04/12/25 Sample Method: SOP.T.20.010

Page 2 of 5

Terpenes

TESTED

Terpenes	LOD (%)	mg/unit	: %	Result (%)	Terpenes		LOD (%)	mg/unit	%	Result (%)	
TOTAL TERPENES	0.007	117.46	1.678		VALENCENE		0.007	ND	ND		
BETA-MYRCENE	0.007	46.97	0.671		ALPHA-CEDRENE		0.007	ND	ND		
BETA-CARYOPHYLLENE	0.007	26.60	0.380		ALPHA-PHELLANDRENE		0.007	ND	ND		
LIMONENE	0.007	17.92	0.256		ALPHA-TERPINENE		0.007	ND	ND		
ALPHA-HUMULENE	0.007	8.26	0.118		ALPHA-TERPINOLENE		0.007	ND	ND		
BETA-PINENE	0.007	3.85	0.055		CIS-NEROLIDOL		0.007	ND	ND		
ENCHYL ALCOHOL	0.007	2.94	0.042		GAMMA-TERPINENE		0.007	ND	ND		
INALOOL	0.007	2.87	0.041		TRANS-NEROLIDOL		0.007	ND	ND		
LPHA-TERPINEOL	0.004	2.87	0.041		Analyzed by:	Weight:		Extraction da	ate:		Extracted by:
ALPHA-PINENE	0.007	2.10	0.030		3605, 585, 1440	1.097g		04/09/24 16:			3605
LPHA-BISABOLOL	0.007	2.03	0.029		Analysis Method : SOP.T.30.061A.FL,	SOP.T.40.061A.FL					
ARNESENE	0.001	1.05	0.015		Analytical Batch : DA071414TER					: 04/11/24 12:13:03	
3-CARENE	0.007	ND	ND		Instrument Used : DA-GCMS-009 Analyzed Date : 04/09/24 16:34:28			Batch	ı vate : (04/09/24 13:13:45	
ORNEOL	0.013	ND	ND		Dilution: 10						
CAMPHENE	0.007	ND	ND		Reagent: 022224.01						
CAMPHOR	0.007	ND	ND		Consumables: 947.109; 230613-634-	-D; CE0123					
CARYOPHYLLENE OXIDE	0.007	ND	ND		Pipette: DA-063						
CEDROL	0.007	ND	ND		Terpenoid testing is performed utilizing Ga	as Chromatography Ma	ass spectr	ometry. For all	Flower sa	imples, the Total Terpenes % is dry	/-weight corrected.
UCALYPTOL	0.007	ND	ND								
ENCHONE	0.007	ND	ND								
GERANIOL	0.007	ND	ND								
GERANYL ACETATE	0.007	ND	ND								
GUAIOL	0.007	ND	ND								
HEXAHYDROTHYMOL	0.007	ND	ND								
SOBORNEOL	0.007	ND	ND								
SOPULEGOL	0.007	ND	ND								
IEROL	0.007	ND	ND								
CIMENE	0.007	ND	ND								
PULEGONE	0.007	ND	ND								
SABINENE	0.007	ND	ND								
SABINENE HYDRATE	0.007	ND	ND								
otal (%)			1.678								

Total (%)

1.678

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs

Supply Shake 7g - Bsctti Mnt Shrbt (I) Biscotti Mint Sherbet (I)

Matrix : Flower

Type: Flower-Cured

Certificate of Analysis

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 **Email:** renee.revna@crescolabs.com Sample : DA40409007-024 Harvest/Lot ID: 2063 9069 0001 7121

Batch#: 2063 9069 0001

7121 Sampled: 04/09/24 Ordered: 04/09/24 Sample Size Received: 35 gram
Total Amount: 685.00 units

Completed: 04/12/24 Expires: 04/12/25 Sample Method: SOP.T.20.010

Page 3 of 5

Pesticides

PASSED

Pesticide	LOD	Units	Action	Pass/Fail	Result	Pesticide		LOD	Units	Action	Pass/Fail	Result
TOTAL CONTAMINANT LOAD (PESTICIDES)	0.010) ppm	Level 5	PASS	ND			0.010		Level	2466	ND
TOTAL DIMETHOMORPH		ppm ppm	0.2	PASS	ND	OXAMYL		0.010		0.5	PASS	ND
TOTAL PERMETHRIN		ppm ppm	0.1	PASS	ND	PACLOBUTRAZOL		0.010		0.1	PASS	ND
TOTAL PYRETHRINS		ppm ppm	0.5	PASS	ND	PHOSMET		0.010	ppm	0.1	PASS	ND
		ppm ppm	0.2	PASS	ND	PIPERONYL BUTOXIDE		0.010	ppm	3	PASS	ND
TOTAL SPINETORAM TOTAL SPINOSAD		ppm ppm	0.1	PASS	ND	PRALLETHRIN		0.010	ppm	0.1	PASS	ND
ABAMECTIN B1A		ppm ppm	0.1	PASS	ND	PROPICONAZOLE		0.010	ppm	0.1	PASS	ND
ACEPHATE		ppm ppm	0.1	PASS	ND	PROPOXUR		0.010	ppm	0.1	PASS	ND
ACEQUINOCYL		ppm ppm	0.1	PASS	ND	PYRIDABEN		0.010		0.2	PASS	ND
ACETAMIPRID) ppm	0.1	PASS	ND	SPIROMESIFEN		0.010		0.1	PASS	ND
ALDICARB		ppm ppm	0.1	PASS	ND			0.010		0.1	PASS	ND
AZOXYSTROBIN		ppm ppm	0.1	PASS	ND	SPIROTETRAMAT						
BIFENAZATE		ppm ppm	0.1	PASS	ND	SPIROXAMINE		0.010		0.1	PASS	ND
BIFENTHRIN) ppm	0.1	PASS	ND	TEBUCONAZOLE		0.010		0.1	PASS	ND
BOSCALID		ppm ppm	0.1	PASS	ND	THIACLOPRID		0.010	ppm	0.1	PASS	ND
CARBARYL		ppm ppm	0.5	PASS	ND	THIAMETHOXAM		0.010	ppm	0.5	PASS	ND
CARBOFURAN		ppm ppm	0.5	PASS	ND	TRIFLOXYSTROBIN		0.010	ppm	0.1	PASS	ND
CHLORANTRANILIPROLE		ppm ppm	1	PASS	ND	PENTACHLORONITROBENZENE	(PCNB) *	0.010	PPM	0.15	PASS	ND
CHLORMEQUAT CHLORIDE		ppm ppm	1	PASS	ND	PARATHION-METHYL *		0.010	PPM	0.1	PASS	ND
CHLORPYRIFOS		ppm ppm	0.1	PASS	ND	CAPTAN *		0.070		0.7	PASS	ND
CLOFENTEZINE		ppm ppm	0.2	PASS	ND	CHLORDANE *		0.010		0.1	PASS	ND
COUMAPHOS		ppm ppm	0.1	PASS	ND	CHLORFENAPYR *		0.010		0.1	PASS	ND
DAMINOZIDE		ppm ppm	0.1	PASS	ND			0.010		0.5	PASS	ND
DIAZINON		ppm ppm	0.1	PASS	ND	CYFLUTHRIN *						
DICHLORVOS) ppm	0.1	PASS	ND	CYPERMETHRIN *		0.050		0.5	PASS	ND
DIMETHOATE) ppm	0.1	PASS	ND	Analyzed by:	Weight:		ion date:		Extracted	l by:
ETHOPROPHOS) ppm	0.1	PASS	ND	3379, 585, 1440	0.9444g		4 18:04:13		3379	
ETOFENPROX) ppm	0.1	PASS	ND	Analysis Method: SOP.T.30.101 SOP.T.40.102.FL (Davie)	.FL (Gainesville), SC	DP.1.30.10	2.FL (Davie	, SOP.1.40.101	FL (Gainesville),
ETOXAZOLE) ppm	0.1	PASS	ND	Analytical Batch : DA071412PES			Reviewed	On:04/10/24	11-48-34	
FENHEXAMID) ppm	0.1	PASS	ND	Instrument Used : DA-LCMS-003				:04/09/24 13		
FENOXYCARB) ppm	0.1	PASS	ND	Analyzed Date : 04/09/24 18:05:	:01					
FENPYROXIMATE) ppm	0.1	PASS	ND	Dilution: 250						
FIPRONIL	0.010) ppm	0.1	PASS	ND	Reagent: 040224.R43; 040423.	08					
FLONICAMID	0.010) ppm	0.1	PASS	ND	Consumables: 326250IW Pipette: N/A						
FLUDIOXONIL) ppm	0.1	PASS	ND	Testing for agricultural agents is p	orformod utilizina Lie	auid Chrom	atography 7	rinlo Ouadruno	lo Macc Sportro	notny in
HEXYTHIAZOX	0.010) ppm	0.1	PASS	ND	accordance with F.S. Rule 64ER20		quiu ciiioii	iacograpity	ripic Quadrapo	ic inass spectror	incury iii
IMAZALIL	0.010) ppm	0.1	PASS	ND	Analyzed by:	Weight:	Extracti	on date:		Extracted	l bv:
IMIDACLOPRID	0.010) ppm	0.4	PASS	ND	450, 585, 1440	0.9444g	04/09/24	18:04:13		3379	,
KRESOXIM-METHYL	0.010) ppm	0.1	PASS	ND	Analysis Method: SOP.T.30.151						
MALATHION	0.010) ppm	0.2	PASS	ND	Analytical Batch : DA071415VO				:04/10/24 12:		
METALAXYL	0.010) ppm	0.1	PASS	ND	Instrument Used : DA-GCMS-003 Analyzed Date : 04/09/24 18:39		Ва	rcn Date :)4/09/24 13:13	:49	
METHIOCARB	0.010) ppm	0.1	PASS	ND	Dilution: 250	.13					
METHOMYL	0.010) ppm	0.1	PASS	ND	Reagent: 040224.R43; 040423.	08: 031824 R05: 03	1824 R06				
MEVINPHOS	0.010) ppm	0.1	PASS	ND	Consumables: 326250IW; 1472		1027.1100				
MYCLOBUTANIL) ppm	0.1	PASS	ND	Pipette: DA-080; DA-146; DA-21						
NALED	0.010) ppm	0.25	PASS	ND	Testing for agricultural agents is p		as Chromat	ography Tri	ole-Quadrupole	Mass Spectrome	try in
						accordance with F.S. Rule 64ER20	-39.					

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs

Supply Shake 7g - Bsctti Mnt Shrbt (I)

Biscotti Mint Sherbet (I) Matrix: Flower

Type: Flower-Cured

Certificate of Analysis

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Fmail: renee revna@crescolabs.com Sample : DA40409007-024 Harvest/Lot ID: 2063 9069 0001 7121

Batch#: 2063 9069 0001

Sampled: 04/09/24 Ordered: 04/09/24

Sample Size Received: 35 gram Total Amount: 685.00 units

Completed: 04/12/24 Expires: 04/12/25 Sample Method: SOP.T.20.010

Page 4 of 5

ppm

nnm

Reviewed On: 04/10/24 11:46:48

Microbial

PASSED

Batch Date: 04/09/24

AFLATOXIN B2

ΔΕΙ ΔΤΟΧΙΝ Β1

Analyte

Mycotoxins

PASSED

Action

Level

0.02

0.02

Pass /

Fail

PASS

PASS

Result

ND

ND

Analyte	LOD	Units	Result	Pass / Fail	Action Level
ASPERGILLUS TERREUS			Not Present	PASS	
ASPERGILLUS NIGER			Not Present	PASS	
ASPERGILLUS FUMIGATUS			Not Present	PASS	
ASPERGILLUS FLAVUS			Not Present	PASS	
SALMONELLA SPECIFIC GENE			Not Present	PASS	
ECOLI SHIGELLA			Not Present	PASS	-
TOTAL YEAST AND MOLD	10	CFU/g	3000	PASS	100000

Analyzed by: Weight: **Extraction date:** Extracted by: 0.8981g 4044, 3390, 585, 1440 04/09/24 14:26:18

Analysis Method : SOP.T.40.056C, SOP.T.40.058.FL, SOP.T.40.209.FL **Reviewed On:** 04/11/24

Analytical Batch: DA071402MIC

Instrument Used: PathogenDx Scanner DA-111.Applied

Biosystems Thermocycler DA-013,fisherbrand Isotemp Heat Block 11:55:09

DA-020, fisherbrand Isotemp Heat Block DA-049, Fisher Scientific Isotemp Heat Block DA-021

Analyzed Date: 04/10/24 13:01:23

Dilution: N/A

Reagent: 032624.35; 031824.R18; 091523.45

Consumables: 7569004024

Pipette: N/A

AI LATOMIN DI		0.002	ppiii	140		0.02				
OCHRATOXIN A		0.002	ppm	ND	PASS	0.02				
AFLATOXIN G1		0.002	ppm	ND	PASS	0.02				
AFLATOXIN G2		0.002	ppm	ND	PASS	0.02				
Analyzed by: 3379, 585, 1440		Extracted 3379	d by:							
Analysis Method: SOP.T.30.101.FL (Gainesville), SOP.T.40.101.FL (Gainesville),										

LOD

0.002

0.002

SOP.T.30.102.FL (Davie), SOP.T.40.102.FL (Davie)

Analytical Batch : DA071419MYC

Instrument Used : N/A Batch Date: 04/09/24 13:15:23 **Analyzed Date:** 04/09/24 18:05:20

Dilution: 250

Reagent: 040224.R43; 040423.08 Consumables: 326250IW

Pipette: N/A

Mycotoxins testing utilizing Liquid Chromatography with Triple-Quadrupole Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

Heavy Metals

PASSED

Analyzed by: 4451, 585, 1440	Weight: 0.8981g	Extraction date: 04/09/24 14:26:18	Extracted by: 4044,3390
Analysis Method : SOF Analytical Batch : DAG Instrument Used : Inco Analyzed Date : N/A	71423TYM		ed On: 04/12/24 16:32:56 ate: 04/09/24 13:48:49
Dilution: N/A Reagent: 032624.35; Consumables: N/A Pipette: N/A	031824.R19		
Total yeast and mold tes accordance with F.S. Rul		tilizing MPN and traditional	culture based techniques in

Metal		LOD	Units	Result	Pass / Fail	Action Level	
TOTAL CONTAMINAN	T LOAD METALS	0.080	ppm	ND	PASS	1.1	
ARSENIC		0.020	ppm	ND	PASS	0.2	
CADMIUM		0.020	ppm	ND	PASS	0.2	
MERCURY		0.020	ppm	ND	PASS	0.2	
LEAD		0.020	ppm	ND	PASS	0.5	
Analyzed by: 1022, 585, 1440	Extraction da 04/09/24 16:4			Extracted 1022	l by:		

Analysis Method: SOP.T.30.082.FL, SOP.T.40.082.FL

Analytical Batch : DA071426HEA Instrument Used : DA-ICPMS-004 Reviewed On: 04/10/24 12:22:06 Batch Date: 04/09/24 14:45:00 Analyzed Date: 04/10/24 10:12:52

Dilution: 50

Reagent: 032824.R05; 032524.R03; 040524.R11; 040824.R16; 040824.R17; 020524.01;

Consumables: 179436: 34623011: 210508058

Pipette: DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs

Supply Shake 7g - Bsctti Mnt Shrbt (I) Biscotti Mint Sherbet (I)

Matrix: Flower

Type: Flower-Cured

Certificate of Analysis

PASSED

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Fmail: renee revna@crescolabs.com Sample : DA40409007-024 Harvest/Lot ID: 2063 9069 0001 7121

Batch#: 2063 9069 0001

Sampled: 04/09/24 Ordered: 04/09/24 Sample Size Received: 35 gram Total Amount: 685.00 units

Completed: 04/12/24 Expires: 04/12/25 Sample Method: SOP.T.20.010

Page 5 of 5

Filth/Foreign **Material**

PASSED

Consumables : N/A

Moisture

PASSED

Analyte LOD Units Result P/F Action Level Analyte LOD Units Result P/F **Action Level** Filth and Foreign Material 0.100 % ND PASS 1 **Moisture Content** 1.00 % PASS 15 11.53 Analyzed by: 1879, 585, 1440 Analyzed by: 4444, 585, 1440 Extraction date Weight: NA N/A N/A 0.527g 04/10/24 15:25:26 4444 Analysis Method: SOP.T.40.090 Analysis Method: SOP.T.40.021 Analytical Batch : DA071430FIL
Instrument Used : Filth/Foreign Material Microscope Analytical Batch: DA071417MOI Instrument Used: DA-003 Moisture Analyzer Reviewed On: 04/11/24 10:08:22 Reviewed On: 04/10/24 16:33:00 Batch Date: 04/10/24 03:04:12 Batch Date: 04/09/24 13:14:53 Analyzed Date : 04/10/24 03:06:43 Analyzed Date: 04/10/24 15:18:46 Dilution: N/A Reagent: 092520.50; 020124.02

Dilution: N/AReagent: N/A Consumables : N/A Pipette: N/A

Filth and foreign material inspection is performed by visual inspection utilizing naked eye and microscope technologies in accordance with F.S. Rule 64ER20-39.

Pipette: DA-066 Moisture Content analysis utilizing loss-on-drying technology in accordance with F.S. Rule 64ER20-39

Water Activity

Reviewed On: 04/10/24 16:34:38

Batch Date: 04/09/24 13:15:11

Analyte Water Activity		LOD 0.010	Units aw	Result 0.505	P/F PASS	Action Level 0.65
Analyzed by: 4444, 585, 1440	Weight: 1.974g		raction d 10/24 15		Ex 44	tracted by: 44

Analysis Method: SOP.T.40.019 Analytical Batch: DA071418WAT

Instrument Used : DA256 Rotronic HygroPalm

Analyzed Date: 04/10/24 15:33:53

Dilution: N/A **Reagent**: 022024.29 Consumables : PS-14 Pipette: N/A

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for

pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164