

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Kaycha Labs

Supply Shake 7g - Rntz x Jlsy (I) Runtz x Jealousy (I) Matrix: Flower Type: Flower-Cured

Certificate of Analysis COMPLIANCE FOR RETAIL

SUPPLY SUNNYSIDE DA40409007-023

Sample:DA40409007-023 Harvest/Lot ID: 0001 3428 6431 1207 Batch#: 0001 3428 6431 1207 Cultivation Facility: FL - Indiantown (3734) Processing Facility : FL - Indiantown (3734) Source Facility : FL - Indiantown (3734) Seed to Sale# 2063 9069 0001 6987 Batch Date: 04/01/24 Sample Size Received: 49 gram Total Amount: 1521.00 units Retail Product Size: 7 gram Retail Serving Size: 7 gram Servings: 1 Ordered: 04/08/24 Sampled: 04/09/24 Completed: 04/12/24

Pages 1 of 5

Sampling Method: SOP.T.20.010

PASSED

MISC.

Apr 12, 2024 | Sunnyside 22205 Sw Martin Hwy indiantown, FL, 34956, US

SAFETY RESULTS

Pesticic PASSE	des Hea	Hg avy Metals ASSED	Microbials PASSED	တို့ Mycotoxin PASSED		Residuals Solvents	Filth PASSED		Activity SSED	Moisture PASSED	Terpenes TESTED
Ä	Cannal	oinoid									PASSED
E C	3 30	THC 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 			0.	I CBD 095% CBD/Container			335	Cannabinoid 747%	0
%	D9-ТНС 0.852	THCA 33.558	CBD ND		ов-тнс 0.032	свд 0.097	CBGA 1.027	CBN ND	THCV ND	CBDV	свс 0.072
⁷⁰ mg/unit	59.64	2349.06	ND		2.24	6.79	71.89	ND	ND	ND	5.04
LOD	0.001	0.001	0.001		0.001	0.001	0.001	0.001	0.001	0.001	0.001
	%	%	%	%	%	%	%	%	%	%	%
Analyzed by: 3335, 585, 1440			Weight: 0.2087g			ion date: 24 15:20:25				Extracted by: 3335	
Analytical Batch Instrument Used						Reviewed On : 04/ Batch Date : 04/09					
Consumables : 94	4.R01; 060723.24 47.109; 28067072); DA-108; DA-078	3; CE0123; R1KB142	270								

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 54-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 04/12/24

Kaycha Labs

Supply Shake 7g - Rntz x Jlsy (I) Runtz x Jealousy (I) Matrix : Flower Type: Flower-Cured

PASSED

TESTED

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: renee.reyna@crescolabs.com
 Sample : DA40409007-023

 Harvest/Lot ID: 0001 3428 6431 1207

 Batch#: 0001 3428 6431
 Sample 1207

 Total Arr

Sampled : 04/09/24 Ordered : 04/09/24

Sample Size Received : 49 gram Total Amount : 1521.00 units Completed : 04/12/24 Expires: 04/12/25 Sample Method : SOP.T.20.010

Page 2 of 5

(

T۵	rn	on	es
	I P	CII	63

lerpenes	LOD (%)	mg/unit	%	Result (%)		Terpenes		LOD (%)	mg/unit	%	Result (%)	
OTAL TERPENES	0.007	96.11	1.373			SABINENE HYDRATE		0.007	ND	ND		
ETA-CARYOPHYLLENE	0.007	17.99	0.257			VALENCENE		0.007	ND	ND		
BETA-MYRCENE	0.007	17.64	0.252			ALPHA-CEDRENE		0.007	ND	ND		
INALOOL	0.007	16.80	0.240			ALPHA-PHELLANDRENE		0.007	ND	ND		
IMONENE	0.007	15.33	0.219			ALPHA-TERPINENE		0.007	ND	ND		
ALPHA-HUMULENE	0.007	7.49	0.107			ALPHA-TERPINOLENE		0.007	ND	ND		
ALPHA-TERPINEOL	0.004	3.92	0.056			CIS-NEROLIDOL		0.007	ND	ND		
ENCHYL ALCOHOL	0.007	3.78	0.054			GAMMA-TERPINENE		0.007	ND	ND		
BETA-PINENE	0.007	3.71	0.053			Analyzed by:	Weight:		Extraction da	ate:		Extracted by:
ARNESENE	0.001	3.50	0.050			3605, 585, 1440	1.0746g		04/09/24 16			3605
ALPHA-BISABOLOL	0.007	2.31	0.033		1	Analysis Method : SOP.T.30.061A.FL, SC	DP.T.40.061A.FL					
ALPHA-PINENE	0.007	1.96	0.028			Analytical Batch : DA071414TER Instrument Used : DA-GCMS-009)4/11/24 12:12:59 /09/24 13:13:45	
RANS-NEROLIDOL	0.007	1.68	0.024			Analyzed Date : 04/09/24 16:34:28			Batch	Date: 04	/09/24 13:13:45	
-CARENE	0.007	ND	ND		1	Dilution : 10						
BORNEOL	0.013	ND	ND			Reagent : 022224.01						
CAMPHENE	0.007	ND	ND			Consumables : 947.109; 230613-634-D;	; CE0123					
CAMPHOR	0.007	ND	ND			Pipette : DA-063						
CARYOPHYLLENE OXIDE	0.007	ND	ND			Terpenoid testing is performed utilizing Gas (Chromatography M	ass Spectr	rometry. For all F	Flower sam	ples, the Total Terpenes % is	dry-weight corrected.
CEDROL	0.007	ND	ND									
UCALYPTOL	0.007	ND	ND									
ENCHONE	0.007	ND	ND									
GERANIOL	0.007	ND	ND									
GERANYL ACETATE	0.007	ND	ND									
GUAIOL	0.007	ND	ND									
HEXAHYDROTHYMOL	0.007	ND	ND									
SOBORNEOL	0.007	ND	ND									
SOPULEGOL	0.007	ND	ND									
IEROL	0.007	ND	ND									
OCIMENE	0.007	ND	ND									
PULEGONE	0.007	ND	ND									
SABINENE	0.007	ND	ND									

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 04/12/24

4131 SW 47th AVENUE SUITE 1408

Kaycha Labs

. Supply Shake 7g - Rntz x Jlsy (I) Runtz x Jealousy (I) Matrix : Flower Type: Flower-Cured

PASSED

PASSED

DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: renee revna@crescolabs.com Sample : DA40409007-023 Harvest/Lot ID: 0001 3428 6431 1207 Batch#:0001 3428 6431

Sampled : 04/09/24 Ordered : 04/09/24 Sample Size Received : 49 gram Total Amount : 1521.00 units Completed : 04/12/24 Expires: 04/12/25 Sample Method : SOP.T.20.010

Page 3 of 5

R 0 Pesticid

Pesticides

Pesticide	LOD	Units	Action Level	Pass/Fail	Result	Pesticide		LOD	Units	Action Level	Pass/Fail	Result
TOTAL CONTAMINANT LOAD (PESTICIDES)	0.010	P.P.	5	PASS	ND	OXAMYL		0.010	ppm	0.5	PASS	ND
TOTAL DIMETHOMORPH	0.010	ppm	0.2	PASS	ND	PACLOBUTRAZOL		0.010	ppm	0.1	PASS	ND
TOTAL PERMETHRIN	0.010		0.1	PASS	ND	PHOSMET		0.010	maa	0.1	PASS	ND
TOTAL PYRETHRINS	0.010		0.5	PASS	ND	PIPERONYL BUTOXIDE		0.010		3	PASS	ND
TOTAL SPINETORAM	0.010		0.2	PASS	ND	PRALLETHRIN		0.010		0.1	PASS	ND
TOTAL SPINOSAD	0.010		0.1	PASS	ND			0.010		0.1	PASS	ND
ABAMECTIN B1A	0.010		0.1	PASS	ND	PROPICONAZOLE						
ACEPHATE	0.010	ppm	0.1	PASS	ND	PROPOXUR		0.010		0.1	PASS	ND
ACEQUINOCYL	0.010		0.1	PASS	ND	PYRIDABEN		0.010		0.2	PASS	ND
ACETAMIPRID	0.010		0.1	PASS	ND	SPIROMESIFEN		0.010	ppm	0.1	PASS	ND
ALDICARB	0.010		0.1	PASS	ND	SPIROTETRAMAT		0.010	ppm	0.1	PASS	ND
AZOXYSTROBIN	0.010		0.1	PASS	ND	SPIROXAMINE		0.010	ppm	0.1	PASS	ND
BIFENAZATE	0.010		0.1	PASS	ND	TEBUCONAZOLE		0.010	ppm	0.1	PASS	ND
BIFENTHRIN	0.010		0.1	PASS	ND	THIACLOPRID		0.010	maa	0.1	PASS	ND
BOSCALID	0.010		0.1	PASS	ND	THIAMETHOXAM		0.010		0.5	PASS	ND
CARBARYL	0.010		0.5	PASS	ND	TRIFLOXYSTROBIN		0.010		0.1	PASS	ND
CARBOFURAN	0.010		0.1	PASS	ND		(5605) +	0.010		0.15	PASS	ND
CHLORANTRANILIPROLE	0.010		1	PASS	ND	PENTACHLORONITROBENZENE	(PCNB) *					
CHLORMEQUAT CHLORIDE	0.010		1	PASS	ND	PARATHION-METHYL *		0.010		0.1	PASS	ND
CHLORPYRIFOS	0.010	ppm	0.1	PASS	ND	CAPTAN *		0.070		0.7	PASS	ND
CLOFENTEZINE	0.010		0.2	PASS	ND	CHLORDANE *		0.010	PPM	0.1	PASS	ND
COUMAPHOS	0.010		0.1	PASS	ND	CHLORFENAPYR *		0.010	PPM	0.1	PASS	ND
DAMINOZIDE	0.010		0.1	PASS	ND	CYFLUTHRIN *		0.050	PPM	0.5	PASS	ND
DIAZINON	0.010	ppm	0.1	PASS	ND	CYPERMETHRIN *		0.050	PPM	0.5	PASS	ND
DICHLORVOS	0.010		0.1	PASS	ND	Analyzed by:	Weight:		ion date:		Extracted	d bw
DIMETHOATE	0.010		0.1	PASS	ND	3379, 585, 1440	0.9855g		4 18:04:12		3379	u by.
ETHOPROPHOS	0.010		0.1	PASS	ND	Analysis Method : SOP.T.30.101.	5			SOP.T.40.101).
ETOFENPROX	0.010	ppm	0.1	PASS	ND	SOP.T.40.102.FL (Davie)						
ETOXAZOLE	0.010		0.1	PASS	ND	Analytical Batch : DA071412PES				On : 04/10/24		
FENHEXAMID	0.010	ppm	0.1	PASS	ND	Instrument Used : DA-LCMS-003			Batch Date	:04/09/24 13	:12:12	
FENOXYCARB	0.010		0.1	PASS	ND	Analyzed Date :04/09/24 18:05:)1					
FENPYROXIMATE	0.010		0.1	PASS	ND	Dilution : 250 Reagent : 040224.R43; 040423.0	18					
FIPRONIL	0.010		0.1	PASS	ND	Consumables : 3262501W	10					
FLONICAMID	0.010		0.1	PASS	ND	Pipette : N/A						
FLUDIOXONIL	0.010	ppm	0.1	PASS	ND	Testing for agricultural agents is pe	rformed utilizing	Liquid Chrom	natography Ti	riple-Quadrupo	le Mass Spectror	metry in
HEXYTHIAZOX	0.010	ppm	0.1	PASS	ND	accordance with F.S. Rule 64ER20-	39.					
IMAZALIL	0.010	ppm	0.1	PASS	ND	Analyzed by:	Weight:		on date:		Extracted	l by:
IMIDACLOPRID	0.010	ppm	0.4	PASS	ND	450, 585, 1440	0.9855g		18:04:12		3379	
KRESOXIM-METHYL	0.010	ppm	0.1	PASS	ND	Analysis Method :SOP.T.30.151.						
MALATHION	0.010	ppm	0.2	PASS	ND	Analytical Batch : DA071415VOL Instrument Used : DA-GCMS-001				:04/10/24 12:		
METALAXYL	0.010	ppm	0.1	PASS	ND	Analyzed Date :04/09/24 18:39:		Ba	itel Date 10	4/09/24 13:13	.43	
METHIOCARB	0.010	ppm	0.1	PASS	ND	Dilution : 250						
METHOMYL	0.010	ppm	0.1	PASS	ND	Reagent : 040224.R43; 040423.0	8: 031824.R05	031824.R06				
MEVINPHOS	0.010	ppm	0.1	PASS	ND	Consumables : 3262501W; 1472						
MEVINPHOS												
MYCLOBUTANIL	0.010	ppm	0.1	PASS	ND	Pipette : DA-080; DA-146; DA-21	8					

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature

04/12/24

Kaycha Labs

Supply Shake 7g - Rntz x Jlsy (I) Runtz x Jealousy (I) Matrix : Flower Type: Flower-Cured

PASSED

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: renee.revna@crescolabs.com Sample : DA40409007-023 Harvest/Lot ID: 0001 3428 6431 1207 Batch#:0001 3428 6431

Sampled : 04/09/24 Ordered : 04/09/24 Sample Size Received : 49 gram Total Amount : 1521.00 units Completed : 04/12/24 Expires: 04/12/25 Sample Method : SOP.T.20.010

Page 4 of 5

्र	bial			PAS	SED	တ္တီ Мусоtох	ins			PAS	SED		
Analyte	LOD	O Units	Result	Pass / Fail	Action Level	Analyte	LOD	Units	Result	Pass / Fail	Action Level		
ASPERGILLUS TERREUS			Not Present	PASS	Level	AFLATOXIN B2	0.002	maa	ND	PASS	0.02		
ASPERGILLUS NIGER			Not Present	PASS		AFLATOXIN B1	0.002	ppm	ND	PASS	0.02		
ASPERGILLUS FUMIGATUS			Not Present	PASS		OCHRATOXIN A	0.002	ppm	ND	PASS	0.02		
SPERGILLUS FLAVUS			Not Present	PASS		AFLATOXIN G1	0.002	ppm	ND	PASS	0.02		
SALMONELLA SPECIFIC GEI	NE		Not Present	PASS		AFLATOXIN G2	0.002	ppm	ND	PASS	0.02		
COLI SHIGELLA			Not Present	PASS		Analyzed by: Weight:	Extraction da	ato		Extracted	by		
TOTAL YEAST AND MOLD	10	CFU/g	470	PASS	100000	3379, 585, 1440 0.9855g		04/09/24 18:04:12			3379		
nalyzed by: 044, 3390, 585, 1440 nalysis Method : SOP.T.40.05	Weight: 0.9435g 6C, SOP.T.40.0	Extraction da 04/09/24 14 058.FL, SOP.T.	:26:18	Extracted 4044,339		Analysis Method : SOP.T.30.101.FL (Ga SOP.T.30.102.FL (Davie), SOP.T.40.107 Analytical Batch : DA071419MYC	2.FL (Davie) Revie	wed On : 0	4/10/24 1	1:46:46			
nalytical Batch : DA071402MI	С		Reviev 16:40:	ved On : 04 50	/11/24	Instrument Used : N/A Analyzed Date : 04/09/24 18:05:20	Batch	Date : 04/	09/24 13:	15:23			
nstrument Used : PathogenDx Biosystems Thermocycler DA-6 DA-020,fisherbrand Isotemp He sotemp Heat Block DA-021 unalyzed Date : 04/10/24 13:03)13,fisherbran eat Block DA-0	d Isotemp Hea	at Block 11:55:	Date : 04/0 09	9/24	Dilution : 250 Reagent : 040224.R43; 040423.08 Consumables : 326250IW Pipette : N/A							
ilution : N/A eagent : 032624.35; 031824. onsumables : 7569004024 ipette : N/A	R18; 091523.4	15				Mycotoxins testing utilizing Liquid Chromal accordance with F.S. Rule 64ER20-39.		e-Quadrupo		PAS			
		raction date: /09/24 14:26:1		Extracted b 4044.3390	у:								
malysis Method : SOP.T.40.20	8 (Gainesville)	, SOP.T.40.20			-56	Metal	LOD	Units	Result	Pass / Fail	Action Level		
nalytical Batch : DA071/23TY			ch Date : 04/09/	,		TOTAL CONTAMINANT LOAD META	LS 0.080	ppm	ND	PASS	1.1		
		a Bat											
strument Used : Incubator (2		ar Bat				ARSENIC	0.020	ppm	ND	PASS	0.2		
nstrument Used : Incubator (2 nalyzed Date : N/A		an Bat				CADMIUM	0.020	ppm ppm	ND	PASS	0.2		
nstrument Used : Incubator (2 nalyzed Date : N/A ilution : N/A eagent : 032624.35; 031824.	5-27*C) DA-09	Bat				CADMIUM MERCURY	0.020 0.020		ND ND	PASS PASS	0.2 0.2		
nstrument Used : Incubator (2 nalyzed Date : N/A ilution : N/A eagent : 032624.35; 031824. onsumables : N/A	5-27*C) DA-09	Bat				CADMIUM	0.020	ppm	ND	PASS	0.2		
Analytical Batch : DA071423TY nstrument Used : Incubator (2 Analyzed Date : N/A Dilution : N/A Leagent : 032624.35; 031824. Consumables : N/A Pipette : N/A Total yeast and mold testing is per cordance with F.S. Rule 64ER20.	5-27*C) DA-09 R19 formed utilizing			d techniques	; in	CADMIUM MERCURY	0.020 0.020	ppm ppm ppm	ND ND ND	PASS PASS	0.2 0.2 0.5		

Dilution : 50 Reagent : 032824.R05; 032524.R03; 040524.R11; 040824.R16; 040824.R17; 020524.01; 032824.R06 Consumables : 179436: 34623011: 210508058

Pipette : DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 04/12/24

Kaycha Labs

Supply Shake 7g - Rntz x Jlsy (I) Runtz x Jealousy (I) Matrix : Flower Type: Flower-Cured

PASSED

PASSED

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: renee.revna@crescolabs.com Sample : DA40409007-023 Harvest/Lot ID: 0001 3428 6431 1207 Batch# : 0001 3428 6431 Sample

1207 Sampled : 04/09/24 Ordered : 04/09/24 Sample Size Received : 49 gram Total Amount : 1521.00 units Completed : 04/12/24 Expires: 04/12/25 Sample Method : SOP.T.20.010

Filth/Foreign Material

Page 5 of 5

Analyte Filth and Foreign Mat	LOD erial 0.10	Units 0 %	Result ND	P/F PASS	Action Level	Analyte Moisture Content		LOD 1.00	Units %	Result 10.16	P/F PASS	Action Level
Analyzed by: 1879, 585, 1440	Weight: NA	Extractio N/A	on date:	Extra N/A	cted by:		eight: 512g		traction d 4/10/24 15			xtracted by: 444
Analysis Method : SOP.T. Analytical Batch : DA071 Instrument Used : Filth/Fo Analyzed Date : 04/10/24	430FIL preign Material Mici	roscope		On : 04/11/ :e : 04/10/24	24 10:08:17 4 03:04:12	Analysis Method : SOP.T.40.02 Analytical Batch : DA071417M(Instrument Used : DA-003 Mois Analyzed Date : 04/10/24 15:11	OI sture Ar	nalyzer		Reviewed On Batch Date : (- 1 -1	
Dilution : N/A Reagent : N/A Consumables : N/A Pipette : N/A						Dilution : N/A Reagent : 092520.50; 020124. Consumables : N/A Pipette : DA-066	.02					
Filth and foreign material in: technologies in accordance			spection utilizi	ng naked eye	and microscope	Moisture Content analysis utilizing	loss-on-	drying t	technology	in accordance	with F.S. R	ule 64ER20-39.
() wa	iter Activ	vity		PAS	SSED							

Analyte Water Activity	-	.0D	Units aw	Result 0.480	P/F Action Leve PASS 0.65			
Analyzed by: 4444, 585, 1440	Weight: Extraction date: Extracted 0 1.788g 04/10/24 15:36:52 4444							
Analysis Method : SOP Analytical Batch : DA0 Instrument Used : DA2 Analyzed Date : 04/10	71418WAT 256 Rotronic Hyg	roPaln	n	Reviewed On Batch Date :				
Dilution : N/A Reagent : 022024.29 Consumables : PS-14 Pipette : N/A								

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 04/12/24