

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

## **Certificate of Analysis COMPLIANCE FOR RETAIL**

Good News Day Off 1:2 Cartridge 1g Day Off 1:2 Matrix: Derivative Type: Distillate

**Kaycha Labs** 



Sample:DA40321012-013 Harvest/Lot ID: 2063 9069 0000 4171 Batch#: 2063 9069 0000 4171 Cultivation Facility: FL - Indiantown (3734) Processing Facility : FL - Indiantown (3734) Source Facility : FL - Indiantown (3734) Seed to Sale# 2063 9069 0000 5606 Batch Date: 03/19/24 Sample Size Received: 16 gram Total Amount: 965.00 units Retail Product Size: 1 gram Retail Serving Size: 1 gram Servings: 1 Ordered: 03/21/24 Sampled: 03/21/24 Completed: 03/25/24

Sampling Method: SOP.T.20.010

PASSED

| PADDUCT IMAGE       SAFETY AE SULTS       MEX.         Image: state                                                       | 22205 Sw N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | Sunnysi                | de           | Sı   | JNN               | ysi               | de    | <b>€</b> ®<br>Page | P<br>es 1 of 6 | ASSED  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------|--------------|------|-------------------|-------------------|-------|--------------------|----------------|--------|
| $ \begin{array}{c} \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PRODUCT IM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AGE S                                 | AFETY RESULTS          |              |      |                   |                   |       |                    |                | MISC.  |
| Image: Product of the second | The second secon |                                       |                        | Heavy Metals |      | oxins Residua     | L<br>Ils Solvents | Filth |                    |                |        |
| 60.661%<br>Dal THC/container : 60.6.61 m       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ä                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cannal                                | binoid                 |              |      |                   |                   |       |                    | I              | PASSED |
| %         60.661         ND         29.806         ND         0.291         1.654         ND         0.739         0.428         0.186         1.625           mg/unit         606.61         ND         298.06         ND         2.91         16.54         ND         7.39         0.428         1.86         1.625         16.25           0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 60                                  | 0.661                  |              | 29   | 9.806             |                   |       | 95<br>Total Ca     | .390%          | ,<br>D |
| mg/unit<br>LoD         606.61<br>0.001         ND<br>0.001         298.06<br>0.001         ND<br>0.001         2.91<br>0.001         16.54<br>0.001         ND<br>0.001         7.39<br>0.001         4.28<br>0.001         1.86<br>0.001         16.25<br>0.001           Analyzed by:<br>3335, 1665, 585, 14J         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                        |              |      |                   |                   |       |                    |                |        |
| Lo         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                        |              |      |                   |                   |       |                    |                |        |
| %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                        |              |      |                   |                   |       |                    |                |        |
| 3335, 1665, 585, 1440       0.1075g       03/22/24 13:36:46       3335         Analysis Method : SOP.T.40.031, SOP.T.30.031       Reviewed On : 03/25/24 09:47:00       3335         Analytical Batch : DA070768POT       Reviewed On : 03/25/24 09:47:00       Batch Date : 03/22/24 13:53:34         Dilution : 400       Reviewed On : 03/22/24 13:53:34       Soperation in the state in the st                                                                                                                                                                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                        |              |      |                   |                   |       |                    |                |        |
| Analytical Batch:         DA070768POT         Reviewed On:         03/25/24 09:47:00           Instrument Used:         DA-LC-003         Batch Date:         03/22/24 11:07:43           Analyzed Date:         03/22/24 13:53:34         Batch Date:         03/22/24 11:07:43           Dilution:         400         Researet:         02/22/24 10:060723.24;         030824.R01           Consumables:         947.109;         280670723;         CE0123;         R1KB14270           Pipette:         DA-079;         DA-108;         DA-078         DA-078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5, 1440                               |                        |              |      |                   | 46                |       |                    |                |        |
| Reagent : 022724.R01; 060723.24; 030824.R01<br>Consumables : 947.109; 280670723; CE0123; R1KB14270<br>Pipette : DA-079; DA-108; DA-078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analytical Batch<br>Instrument Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n:DA070768POT<br>d:DA-LC-003          |                        |              |      |                   |                   | )     |                    |                |        |
| Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reagent : 02272<br>Consumables : 9<br>Pipette : DA-079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 947.109; 2806707<br>9; DA-108; DA-078 | 23; CE0123; R1KB1<br>3 |              | <br> | - Duile 045000-00 |                   |       |                    |                |        |

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 54-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

#### **Vivian Celestino** Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 03/25/24



..... Good News Day Off 1:2 Cartridge 1g Day Off 1:2 Matrix : Derivative Type: Distillate



PASSED

TESTED

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

# **Certificate of Analysis**

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: renee.revna@crescolabs.com Sample : DA40321012-013 Harvest/Lot ID: 2063 9069 0000 4171 Batch# : 2063 9069 0000

4171 Sampled : 03/21/24 Ordered : 03/21/24

Sample Size Received : 16 gram Total Amount : 965.00 units Completed : 03/25/24 Expires: 03/25/25 Sample Method : SOP.T.20.010

Page 2 of 6

| $\bigcirc$    |
|---------------|
| $\mathcal{L}$ |

### Terpenes

| Terpenes           | LOD<br>(%) | mg/unit | %     | Result (%) |    | Terpenes                                                        |                 | LOD<br>(%)  | mg/unit            | %          | Result (%)                         |                       |
|--------------------|------------|---------|-------|------------|----|-----------------------------------------------------------------|-----------------|-------------|--------------------|------------|------------------------------------|-----------------------|
| OTAL TERPENES      | 0.007      | 45.18   | 4.518 |            |    | SABINENE                                                        |                 | 0.007       | ND                 | ND         |                                    |                       |
| IMONENE            | 0.007      | 13.98   | 1.398 |            |    | SABINENE HYDRATE                                                |                 | 0.007       | ND                 | ND         |                                    |                       |
| ETA-CARYOPHYLLENE  | 0.007      | 12.22   | 1.222 |            |    | VALENCENE                                                       |                 | 0.007       | ND                 | ND         |                                    |                       |
| ETA-MYRCENE        | 0.007      | 8.10    | 0.810 |            |    | ALPHA-CEDRENE                                                   |                 | 0.007       | ND                 | ND         |                                    |                       |
| LPHA-BISABOLOL     | 0.007      | 3.49    | 0.349 |            |    | ALPHA-PHELLANDRENE                                              |                 | 0.007       | ND                 | ND         |                                    |                       |
| ETA-PINENE         | 0.007      | 2.22    | 0.222 |            |    | ALPHA-TERPINENE                                                 |                 | 0.007       | ND                 | ND         |                                    |                       |
| OTAL TERPINEOL     | 0.007      | 1.54    | 0.154 |            |    | CIS-NEROLIDOL                                                   |                 | 0.007       | ND                 | ND         |                                    |                       |
| LPHA-PINENE        | 0.007      | 1.49    | 0.149 |            |    | GAMMA-TERPINENE                                                 |                 | 0.007       | ND                 | ND         |                                    |                       |
| LPHA-HUMULENE      | 0.007      | 0.83    | 0.083 |            | 1  | Analyzed by:                                                    | Weight:         |             | Extraction d       | ate:       |                                    | Extracted by:         |
| LPHA-TERPINOLENE   | 0.007      | 0.39    | 0.039 |            |    | 3605, 585, 1440                                                 | 0.1992g         |             | 03/22/24 14        | :34:34     |                                    | 3605                  |
| ARYOPHYLLENE OXIDE | 0.007      | 0.38    | 0.038 |            |    | Analysis Method : SOP.T.30.061A.FL, SO                          | P.T.40.061A.FL  |             |                    |            |                                    |                       |
| AMPHENE            | 0.007      | 0.31    | 0.031 |            |    | Analytical Batch : DA070741TER<br>Instrument Used : DA-GCMS-009 |                 |             |                    |            | 3/25/24 09:47:02<br>22/24 08:37:05 |                       |
| RANS-NEROLIDOL     | 0.007      | 0.23    | 0.023 |            |    | Analyzed Date : 03/22/24 14:35:02                               |                 |             | Batch              | Date: 03/  | 22/24 08:37:05                     |                       |
| CARENE             | 0.007      | ND      | ND    |            | i. | Dilution : 10                                                   |                 |             |                    |            |                                    |                       |
| ORNEOL             | 0.013      | ND      | ND    |            |    | Reagent : 022224.01                                             |                 |             |                    |            |                                    |                       |
| AMPHOR             | 0.007      | ND      | ND    |            |    | Consumables : 947.109; CE0123                                   |                 |             |                    |            |                                    |                       |
| EDROL              | 0.007      | ND      | ND    |            |    | Pipette : DA-063                                                |                 |             |                    |            |                                    |                       |
| UCALYPTOL          | 0.007      | ND      | ND    |            |    | Terpenoid testing is performed utilizing Gas C                  | hromatography N | lass Spectr | rometry. For all I | Hower samp | ples, the Total Terpenes % is i    | dry-weight corrected. |
| ARNESENE           | 0.001      | ND      | ND    |            |    |                                                                 |                 |             |                    |            |                                    |                       |
| ENCHONE            | 0.007      | ND      | ND    |            |    |                                                                 |                 |             |                    |            |                                    |                       |
| ENCHYL ALCOHOL     | 0.007      | ND      | ND    |            |    |                                                                 |                 |             |                    |            |                                    |                       |
| ERANIOL            | 0.007      | ND      | ND    |            |    |                                                                 |                 |             |                    |            |                                    |                       |
| ERANYL ACETATE     | 0.007      | ND      | ND    |            |    |                                                                 |                 |             |                    |            |                                    |                       |
| UAIOL              | 0.007      | ND      | ND    |            |    |                                                                 |                 |             |                    |            |                                    |                       |
| EXAHYDROTHYMOL     | 0.007      | ND      | ND    |            |    |                                                                 |                 |             |                    |            |                                    |                       |
| OBORNEOL           | 0.007      | ND      | ND    |            |    |                                                                 |                 |             |                    |            |                                    |                       |
| OPULEGOL           | 0.007      | ND      | ND    |            |    |                                                                 |                 |             |                    |            |                                    |                       |
| INALOOL            | 0.007      | ND      | ND    |            |    |                                                                 |                 |             |                    |            |                                    |                       |
| EROL               | 0.007      | ND      | ND    |            |    |                                                                 |                 |             |                    |            |                                    |                       |
|                    | 0.007      | ND      | ND    |            |    |                                                                 |                 |             |                    |            |                                    |                       |
| CIMENE             |            |         |       |            |    |                                                                 |                 |             |                    |            |                                    |                       |
| DCIMENE            | 0.007      | ND      | ND    |            |    |                                                                 |                 |             |                    |            |                                    |                       |

Total (%)

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

#### **Vivian Celestino** Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 03/25/24



. . . . . . . . . . . . . . . Good News Day Off 1:2 Cartridge 1g Day Off 1:2 Matrix : Derivative Type: Distillate



4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

# **Certificate of Analysis**

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: renee.revna@crescolabs.com Sample : DA40321012-013 Harvest/Lot ID: 2063 9069 0000 4171

Batch#: 2063 9069 0000 4171 Sampled : 03/21/24 Ordered : 03/21/24

Sample Size Received : 16 gram Total Amount : 965.00 units Completed : 03/25/24 Expires: 03/25/25 Sample Method : SOP.T.20.010

Page 3 of 6

R 0 Pestici

## Pesticides

| Pesticide                           |       | Units   | Action<br>Level | Pass/Fail | Result | Pesticide                                                       | LO                          | O Units                       | Action<br>Level   | Pass/Fail         | Result    |
|-------------------------------------|-------|---------|-----------------|-----------|--------|-----------------------------------------------------------------|-----------------------------|-------------------------------|-------------------|-------------------|-----------|
| TOTAL CONTAMINANT LOAD (PESTICIDES) | 0.010 | ppm     | 5               | PASS      | ND     | OXAMYL                                                          | 0.0                         | L0 ppm                        | 0.5               | PASS              | ND        |
| TOTAL DIMETHOMORPH                  | 0.010 |         | 0.2             | PASS      | ND     | PACLOBUTRAZOL                                                   | 0.03                        | 0 ppm                         | 0.1               | PASS              | ND        |
| TOTAL PERMETHRIN                    | 0.010 | ppm     | 0.1             | PASS      | ND     | PHOSMET                                                         | 0.0                         | L0 ppm                        | 0.1               | PASS              | ND        |
| FOTAL PYRETHRINS                    | 0.010 | ppm     | 0.5             | PASS      | ND     | PIPERONYL BUTOXIDE                                              |                             | L0 ppm                        | 3                 | PASS              | ND        |
| TOTAL SPINETORAM                    | 0.010 | ppm     | 0.2             | PASS      | ND     |                                                                 |                             | LO ppm                        | 0.1               | PASS              | ND        |
| TOTAL SPINOSAD                      | 0.010 | ppm     | 0.1             | PASS      | ND     | PRALLETHRIN                                                     |                             |                               | 0.1               | PASS              | ND        |
| ABAMECTIN B1A                       | 0.010 | ppm     | 0.1             | PASS      | ND     | PROPICONAZOLE                                                   |                             | .0 ppm                        |                   |                   |           |
| ACEPHATE                            | 0.010 | ppm     | 0.1             | PASS      | ND     | PROPOXUR                                                        |                             | L0 ppm                        | 0.1               | PASS              | ND        |
| CEQUINOCYL                          | 0.010 | ppm     | 0.1             | PASS      | ND     | PYRIDABEN                                                       | 0.03                        | LO ppm                        | 0.2               | PASS              | ND        |
| CETAMIPRID                          | 0.010 | ppm     | 0.1             | PASS      | ND     | SPIROMESIFEN                                                    | 0.0                         | L0 ppm                        | 0.1               | PASS              | ND        |
| ALDICARB                            | 0.010 | ppm     | 0.1             | PASS      | ND     | SPIROTETRAMAT                                                   | 0.0                         | l0 ppm                        | 0.1               | PASS              | ND        |
| ZOXYSTROBIN                         | 0.010 | ppm     | 0.1             | PASS      | ND     | SPIROXAMINE                                                     | 0.03                        | 0 ppm                         | 0.1               | PASS              | ND        |
| BIFENAZATE                          | 0.010 | ppm     | 0.1             | PASS      | ND     | TEBUCONAZOLE                                                    | 0.0                         | LO ppm                        | 0.1               | PASS              | ND        |
| BIFENTHRIN                          | 0.010 | ppm     | 0.1             | PASS      | ND     | THIACLOPRID                                                     |                             | L0 ppm                        | 0.1               | PASS              | ND        |
| BOSCALID                            | 0.010 | ppm     | 0.1             | PASS      | ND     |                                                                 |                             | LO ppm                        | 0.5               | PASS              | ND        |
| CARBARYL                            | 0.010 | ppm     | 0.5             | PASS      | ND     | THIAMETHOXAM                                                    |                             |                               |                   |                   |           |
| CARBOFURAN                          | 0.010 | ppm     | 0.1             | PASS      | ND     | TRIFLOXYSTROBIN                                                 |                             | .0 ppm                        | 0.1               | PASS              | ND        |
| CHLORANTRANILIPROLE                 | 0.010 | ppm     | 1               | PASS      | ND     | PENTACHLORONITROBENZENE (P                                      | chib)                       | LO PPM                        | 0.15              | PASS              | ND        |
| CHLORMEQUAT CHLORIDE                | 0.010 | ppm     | 1               | PASS      | ND     | PARATHION-METHYL *                                              | 0.0                         | LO PPM                        | 0.1               | PASS              | ND        |
| CHLORPYRIFOS                        | 0.010 | ppm     | 0.1             | PASS      | ND     | CAPTAN *                                                        | 0.0                         | 0 PPM                         | 0.7               | PASS              | ND        |
| LOFENTEZINE                         | 0.010 | ppm     | 0.2             | PASS      | ND     | CHLORDANE *                                                     | 0.0                         | LO PPM                        | 0.1               | PASS              | ND        |
| COUMAPHOS                           | 0.010 | ppm     | 0.1             | PASS      | ND     | CHLORFENAPYR *                                                  | 0.03                        | LO PPM                        | 0.1               | PASS              | ND        |
| DAMINOZIDE                          | 0.010 | ppm     | 0.1             | PASS      | ND     | CYFLUTHRIN *                                                    | 0.0                         | 0 PPM                         | 0.5               | PASS              | ND        |
| IAZINON                             | 0.010 | ppm     | 0.1             | PASS      | ND     | CYPERMETHRIN *                                                  |                             | 0 PPM                         | 0.5               | PASS              | ND        |
| ICHLORVOS                           | 0.010 | ppm     | 0.1             | PASS      | ND     |                                                                 |                             |                               | 0.5               |                   |           |
| IMETHOATE                           | 0.010 | ppm     | 0.1             | PASS      | ND     | Analyzed by:<br>3379, 585, 1440                                 |                             | action date:<br>2/24 16:37:08 | 8                 | Extracted<br>3379 | a by:     |
| THOPROPHOS                          | 0.010 | ppm     | 0.1             | PASS      | ND     | Analysis Method : SOP.T.30.101.FL                               |                             |                               |                   |                   | )         |
| TOFENPROX                           | 0.010 | ppm     | 0.1             | PASS      | ND     | SOP.T.40.102.FL (Davie)                                         | _ (Gamesvine), 501.1.50.    | 102.1 L (Davi                 | e), 501.1.40.101  | L (Gamesville     | -/,       |
| TOXAZOLE                            | 0.010 | ppm     | 0.1             | PASS      | ND     | Analytical Batch : DA070763PES                                  |                             | Reviewee                      | d On :03/25/24    | 11:16:36          |           |
| ENHEXAMID                           | 0.010 | ppm     | 0.1             | PASS      | ND     | Instrument Used : DA-LCMS-003 (F                                |                             | Batch Da                      | te:03/22/24 11    | :00:39            |           |
| ENOXYCARB                           | 0.010 | ppm     | 0.1             | PASS      | ND     | Analyzed Date :03/22/24 16:42:40                                | )                           |                               |                   |                   |           |
| ENPYROXIMATE                        | 0.010 | ppm     | 0.1             | PASS      | ND     | Dilution: 250                                                   |                             |                               |                   |                   |           |
| IPRONIL                             | 0.010 | ppm     | 0.1             | PASS      | ND     | Reagent: 031924.R27; 040423.08                                  |                             |                               |                   |                   |           |
| FLONICAMID                          | 0.010 | ppm     | 0.1             | PASS      | ND     | Consumables : 326250IW<br>Pipette : N/A                         |                             |                               |                   |                   |           |
| LUDIOXONIL                          | 0.010 | ppm     | 0.1             | PASS      | ND     | Testing for agricultural agents is perf                         | formed utilizing Liquid Chr | omatography                   | Triple-Quadrupo   | le Mass Spectror  | metry in  |
| IEXYTHIAZOX                         | 0.010 | ppm     | 0.1             | PASS      | ND     | accordance with F.S. Rule 64ER20-39                             |                             | omatography                   | Triple-Quadrupo   | ie Mass Spectru   | ineu y in |
| MAZALIL                             | 0.010 | ppm     | 0.1             | PASS      | ND     | Analyzed by:                                                    | Veight: Extra               | ction date:                   |                   | Extracted         | d bv:     |
| MIDACLOPRID                         | 0.010 | ppm     | 0.4             | PASS      | ND     |                                                                 |                             | 24 16:37:08                   |                   | 3379              |           |
| RESOXIM-METHYL                      | 0.010 |         | 0.1             | PASS      | ND     | Analysis Method : SOP.T.30.151.FL                               | (Gainesville), SOP.T.30.    | 151A.FL (Dav                  | /ie), SOP.T.40.15 | 51.FL             |           |
| ALATHION                            | 0.010 |         | 0.2             | PASS      | ND     | Analytical Batch : DA070765VOL                                  |                             |                               | n:03/25/24 11:    |                   |           |
| METALAXYL                           | 0.010 |         | 0.1             | PASS      | ND     | Instrument Used : DA-GCMS-010                                   |                             | Batch Date                    | :03/22/24 11:03   | :00               |           |
| METHIOCARB                          | 0.010 |         | 0.1             | PASS      | ND     | Analyzed Date :03/22/24 17:33:04                                | -                           |                               |                   |                   |           |
| AETHOMYL                            | 0.010 |         | 0.1             | PASS      | ND     | Dilution : 250                                                  | . 021024 005- 021024 0      | 0.6                           |                   |                   |           |
| /EVINPHOS                           | 0.010 |         | 0.1             | PASS      | ND     | Reagent: 031924.R27; 040423.08<br>Consumables: 326250IW: 147254 |                             | סע                            |                   |                   |           |
| ACCOBUTANIL                         | 0.010 |         | 0.1             | PASS      | ND     | Pipette : DA-080; DA-146; DA-218                                | ~ .                         |                               |                   |                   |           |
| VALED                               | 0.010 |         | 0.25            | PASS      | ND     | Testing for agricultural agents is perf                         | formed utilizing Gas Chror  | natography Ti                 | riple-Quadrupole  | Mass Spectrome    | etrv in   |
|                                     | 0.010 | P.P.I.I | 0.25            |           |        | accordance with F.S. Rule 64ER20-39                             |                             |                               |                   | opeen onne        |           |

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

#### **Vivian Celestino** Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 03/25/24

PASSED

PASSED



Page 4 of 6

Good News Day Off 1:2 Cartridge 1g Day Off 1:2 Matrix : Derivative Type: Distillate



4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

kaycha°

LABS

## **Certificate of Analysis**

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US Telephone: (772) 631-0257 Email: renee.reyna@crescolabs.com 
 Sample : DA40321012-013

 Harvest/Lot ID: 2063 9069 0000 4171

 Batch#: 2063 9069 0000
 Sample

 4171
 Total And

Sampled : 03/21/24 Ordered : 03/21/24 00 4171 Sample Size Received : 16 gram Total Amount : 965.00 units Completed : 03/25/24 Expires: 03/25/25 Sample Method : SOP.T.20.010



### **Residual Solvents**

| Solvents                                                                                                                                  | LOD                | Units                              | Action Level                                       | Pass/Fail            | Result |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------|----------------------------------------------------|----------------------|--------|--|
| 1,1-DICHLOROETHENE                                                                                                                        | 0.800              | ppm                                | 8                                                  | PASS                 | ND     |  |
| 1,2-DICHLOROETHANE                                                                                                                        | 0.200              | ppm                                | 2                                                  | PASS                 | ND     |  |
| ACETONE                                                                                                                                   | 75.000             | ppm                                | 750                                                | PASS                 | ND     |  |
| DICHLOROMETHANE                                                                                                                           | 12.500             | ppm                                | 125                                                | PASS                 | ND     |  |
| ENZENE                                                                                                                                    | 0.100              | ppm                                | 1                                                  | PASS                 | ND     |  |
| -PROPANOL                                                                                                                                 | 50.000             | ppm                                | 500                                                | PASS                 | ND     |  |
| CHLOROFORM                                                                                                                                | 0.200              | ppm                                | 2                                                  | PASS                 | ND     |  |
| ETHANOL                                                                                                                                   | 500.000            | ppm                                | 5000                                               | PASS                 | ND     |  |
| ETHYL ACETATE                                                                                                                             | 40.000             | ppm                                | 400                                                | PASS                 | ND     |  |
| BUTANES (N-BUTANE)                                                                                                                        | 500.000            | ppm                                | 5000                                               | PASS                 | ND     |  |
| ACETONITRILE                                                                                                                              | 6.000              | ppm                                | 60                                                 | PASS                 | ND     |  |
| THYL ETHER                                                                                                                                | 50.000             | ppm                                | 500                                                | PASS                 | ND     |  |
| THYLENE OXIDE                                                                                                                             | 0.500              | ppm                                | 5                                                  | PASS                 | ND     |  |
| IEPTANE                                                                                                                                   | 500.000            | ppm                                | 5000                                               | PASS                 | ND     |  |
| IETHANOL                                                                                                                                  | 25.000             | ppm                                | 250                                                | PASS                 | ND     |  |
| HEXANE                                                                                                                                    | 25.000             | ppm                                | 250                                                | PASS                 | ND     |  |
| PENTANES (N-PENTANE)                                                                                                                      | 75.000             | ppm                                | 750                                                | PASS                 | ND     |  |
| OLUENE                                                                                                                                    | 15.000             | ppm                                | 150                                                | PASS                 | ND     |  |
| TOTAL XYLENES                                                                                                                             | 15.000             | ppm                                | 150                                                | PASS                 | ND     |  |
| PROPANE                                                                                                                                   | 500.000            | ppm                                | 5000                                               | PASS                 | ND     |  |
| RICHLOROETHYLENE                                                                                                                          | 2.500              | ppm                                | 25                                                 | PASS                 | ND     |  |
| Analyzed by:<br>850, 585, 1440                                                                                                            | Weight:<br>0.0201g | Extraction date: 03/24/24 15:24:47 |                                                    | Extracted by:<br>850 |        |  |
| Analysis Method : SOP.T.40.041.FL<br>Analytical Batch : DA070791SOL<br>Instrument Used : DA-GCMS-003<br>Analyzed Date : 03/22/24 18:01:45 |                    |                                    | l On : 03/25/24 09:45:23<br>te : 03/22/24 16:44:41 |                      |        |  |
| Dilution : 1                                                                                                                              |                    |                                    |                                                    |                      |        |  |

Dilution : 1 Reagent : 030420.09 Consumables : 429651; 304486 Pipette : DA-309 25 uL Syringe 35028

Residual solvents analysis is performed utilizing Gas Chromatography Mass Spectrometry in accordance with with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

### Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 03/25/24

PASSED

PASSED



..... Good News Day Off 1:2 Cartridge 1g Day Off 1:2 Matrix : Derivative Type: Distillate



4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

# **Certificate of Analysis**

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: renee.revna@crescolabs.com Sample : DA40321012-013 Harvest/Lot ID: 2063 9069 0000 4171

Batch# : 2063 9069 0000 4171 Sampled : 03/21/24 Ordered : 03/21/24

Sample Size Received : 16 gram Total Amount : 965.00 units Completed : 03/25/24 Expires: 03/25/25 Sample Method : SOP.T.20.010

Page 5 of 6

|                                                                                                                                          | 15                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| n Analyte                                                                                                                                | LOD Unit                                                                                                                                                                                                                         | s Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pass /<br>Fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Action<br>Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AFLATOXIN B2                                                                                                                             | 0.002 ppm                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AFLATOXIN B1                                                                                                                             | 0.002 ppm                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| OCHRATOXIN A                                                                                                                             | 0.002 ppm                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AFLATOXIN G1                                                                                                                             | 0.002 ppm                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AFLATOXIN G2                                                                                                                             | 0.002 ppm                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                          | Extraction date:<br>03/22/24 16:37:08                                                                                                                                                                                            | Extracted by:<br>3379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SOP.T.30.102.FL (Davie), SOP.T.40.102.FL<br>Analytical Batch : DA070767MYC<br>Instrument Used : N/A<br>Analyzed Date : 03/22/24 16:42:13 | (Davie)<br>Reviewed On<br>Batch Date :                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dilution : 250<br>Reagent : 031924.R27; 040423.08<br>Consumables : 3262501W<br>Pipette : N/A                                             |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Mycotoxins testing utilizing Liquid Chromatogra<br>accordance with F.S. Rule 64ER20-39.                                                  | aphy with Triple-Quadr                                                                                                                                                                                                           | upole Mass Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ectrometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| [н <sub>g</sub> ] Heavy Me                                                                                                               | tals                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Metal                                                                                                                                    | LOD Unit                                                                                                                                                                                                                         | s Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pass /<br>Fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Action<br>Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TOTAL CONTAMINANT LOAD METALS                                                                                                            | 0.080 ppm                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ARSENIC                                                                                                                                  |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                          |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                          |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                          | Extraction date:                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Extracted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                          | (13/7)/74 + 7.14.73                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                          | Pipette : N/A<br>Mycotoxins testing utilizing Liquid Chromatogra<br>accordance with F.S. Rule 64ER20-39.<br>Heavy Mer<br>Metal<br>TOTAL CONTAMINANT LOAD METALS<br>ARSENIC<br>CADMIUM<br>MERCURY<br>LEAD<br>Analyzed by: Weight: | Pipette : N/A         Mycotoxins testing utilizing Liquid Chromatography with Triple-Quadraccordance with F.S. Rule 64ER20-39.         Image: Content of the system of the | Pipette : N/A         Mycotoxins testing utilizing Liquid Chromatography with Triple-Quadrupole Mass Spaccordance with F.S. Rule 64ER20-39.         Image: teacher in the system of the s | Pipette : N/A         Mycotoxins testing utilizing Liquid Chromatography with Triple-Quadrupole Mass Spectrometry accordance with F.S. Rule 64ER20-39.         Hg       Heavy Metals       PASS         Metal       LOD       Units       Result       Pass / Fail         TOTAL CONTAMINANT LOAD METALS       0.080       ppm       ND       PASS         ARSENIC       0.020       ppm       ND       PASS         Mercury       0.020       ppm       ND       PASS         MERCURY       0.020       ppm       ND       PASS         LAD       0.020       ppm       ND       PASS         Metal       Extraction date:       Extracted |

Reagent: 030524.R01; 031124.R06; 031424.R03; 031124.R04; 031124.R05; 030424.01 Consumables : 179436; 34623011; 210508058 Pipette : DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

#### **Vivian Celestino** Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 03/25/24

PASSED



..... Good News Day Off 1:2 Cartridge 1g Day Off 1:2 Matrix : Derivative Type: Distillate



4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

# **Certificate of Analysis**

Sunnyside

22205 Sw Martin Hwy indiantown, FL, 34956, US **Telephone:** (772) 631-0257 Email: renee.revna@crescolabs.com Sample : DA40321012-013 Harvest/Lot ID: 2063 9069 0000 4171 Batch# : 2063 9069 0000 4171

Sampled : 03/21/24 Ordered : 03/21/24

Sample Size Received : 16 gram Total Amount : 965.00 units Completed : 03/25/24 Expires: 03/25/25 Sample Method : SOP.T.20.010

|          |                                                                      | Filth/<br>Mate                   |             | eig                          | n          |                     | PASSED               |                              |  |
|----------|----------------------------------------------------------------------|----------------------------------|-------------|------------------------------|------------|---------------------|----------------------|------------------------------|--|
|          | nalyte<br>ilth and Fore                                              | ign Material                     |             | <b>LOD</b><br>0.100          | Units<br>% | <b>Result</b><br>ND | P/F<br>PASS          | Action Level                 |  |
|          | nalyzed by:<br>379, 585, 1440                                        |                                  | Weigh<br>NA | Weight:Extraction date:NAN/A |            |                     | Extracted by:<br>N/A |                              |  |
| Aı<br>In | nalysis Method<br>nalytical Batch<br>strument Used<br>nalyzed Date : | : DA070787FII<br>: Filth/Foreign | Materi      | al Micro                     | scope      |                     | ,                    | 2/24 22:38:23<br>24 12:49:10 |  |
| Re<br>Ce | ilution: N/A<br>eagent: N/A<br>onsumables: N<br>pette: N/A           | //A                              |             |                              |            |                     |                      |                              |  |
|          | Ith and foreign n<br>chnologies in ac                                |                                  |             |                              |            | spection utilizi    | ng naked ey          | e and microscope             |  |
|          | $(\bigcirc)$                                                         | Wata                             | r A         | ctiv                         | i          |                     | PA                   | SSED                         |  |

Water Activity

| Analyte<br>Water Activity                                                                          |                             | <b>LOD</b><br>0.010 | <b>Units</b><br>aw      | <b>Result</b> 0.473         | P/F<br>PASS | Action Level<br>0.85 |
|----------------------------------------------------------------------------------------------------|-----------------------------|---------------------|-------------------------|-----------------------------|-------------|----------------------|
| Analyzed by:<br>4056, 585, 1440                                                                    | Weight:<br>0.386g           |                     | traction d<br>/22/24 17 |                             |             | tracted by:<br>056   |
| Analysis Method : SOP<br>Analytical Batch : DAO<br>Instrument Used : DA-<br>Analyzed Date : 03/22/ | 70790WAT<br>028 Rotronic Hy | gropalı             | m                       | Reviewed Or<br>Batch Date : | / - /       |                      |
| Dilution : N/A<br>Reagent : 022024.28<br>Consumables : PS-14<br>Pipette : N/A                      |                             |                     |                         |                             |             |                      |

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

#### **Vivian Celestino** Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 03/25/24

### PASSED

Page 6 of 6