

Relax & Rest 6000 mg CBD Full Spectrum Tincture N/A

Matrix: Derivative

	Sample:DA00709015-004
Certificate	Harvest/Lot ID: W6RR 01-0720
	Seed to Sale #N/A
	Batch Date :N/A
	Batch#: W6RR 01-0720
of Analysis	Sample Size Received: 15 ml
UI AIIGIYSIS	Total Weight/Volume: N/A
	Retail Product Size: 30 ml gram
	Ordered : 07/06/20
	sampled : 07/06/20
	Completed: 07/31/20
	Sampling Method: SOP Client Method
Jul 31, 2020 Carolina Cannabinoids	PASSED
LLC.	Page 1 of 4
5104 Reagan Drive Charlotte, NC, 28206, US	
PRODUCT IMAGE SAFETY RESULTS	MISC.

LLC. 5104 Reagan Drive Charlotte, NC, 28206, US

RODUCT	T IMAGE		SAFETY	RESULTS	5												MIS	5C.
	の の の の の の の の の し の の し の の の し の の の の の の の の の の の の の	Xi	١.,	R	П	— h	Ĩ	à.	9	20		°0	($\overline{\mathbf{i}}$	\bigcirc	\triangle	8	3
	CAROLL CANCAREN DV0C091	0005 5904		0	U	Hg	7	J.	બુ	႓ၟၜ		Ц	(:e)	(\bigcirc)	$\mathcal{O}\mathcal{C}$	$) & \& \\ & & \& \\ & & \& \\ & & \& \\ & & & \& \\ & & & &$	Ľ
	WGR		Pe	sticides	Hear	vy Metals	i Mi	robials	My	cotoxins	Re	siduals		Filth	Water Activity	Moisture	Terp	enes
	WERK		P/	SSED	P/	ASSED	P/	SSED	P/	ASSED		olvents ASSED	P	ASSED	NOT TESTED	NOT TESTE	D NOT T	ESTE
			ECHI.	TO														
		Т	otal T	нс	2/0		F			tal CE		%		E	1	Cannabino		
ANN		т С	otal T	нс 979	% :85.536	mg	Kin		2	6.6	8D 580 ainer :7		0 mg	Kin		Cannabino .821 ⁹ Cannabinoid 448 mg	%	er
ANN		т С	otal T	нс 979		mg	Kin		2	6.6	580		0 mg	Carlo Carlo		.821 ^G	%	
		т С	otal T	нс 979		5 mg			2	6.6	580		0 mg	Carlo Carlo	•)27 Total :8012	.821 Cannabinoid 448 mg	% Is/Containe	
T		Tr C TH TH	otal T).2 (dC/Con	HC 979	:85.536	СВG	THCV	D8-THC	2 CB	6.6 D/Conta	SBO ainer :7	683.86	D9-THC	THEA	27 Total :8012	.821 Cannabinoid 448 mg	9⁄0 Is/Containe PAS	SEC
T C 2	TOTAL CA 27.8210	та С тн тотац св 26.6800	otal T) 2 (łC/Con TOTAL TH 0.2970	HC 979 tainer	:85.536 cbga ND	св б 0.3920	ND	ND	2 CB 0.3630	G.G.	580 ainer :7	683.86 	рэ-тнс 0.2970	ND	Analysis Material Analysis Mat	Annabinoid 448 mg	PAS Extracted By LOD 07/09/20 09:49:10	NA Resul
ст. Карана мариана Карана С С С С С С С С С С С С С С С С С С		Tr C TH TH	otal T).2 (dC/Con	HC 979	:85.536	СВG			2 CB	6.6 D/Conta	SBO ainer :7	683.86 	D9-THC		Analyzed By Status S	.821 Cannabinoid 448 mg	P% s/Contained PAS Extracted By LOD 07/09/20 09:49:10 07/09/20 09:49:10	SED NA Result ND

Analyzed by	Weight 0.1100g	Extraction date	· / /	Extracted By :
Analysis Method -SOP.T.40.		Reviewed On - 07/30/	20 17:28:32	Batch Date : 07/29/20 09:41:28
Analytical Batch -DA014367	POT Instrument U	Used : DA-LC-003		
Reagent		Dilution	Consums. ID	- TIT
061220.18		400	280678841	
072320.R14 062220.21			918C4-918J 914C4-914AK	

062220.21 072320.R13

Full spectrum cannabinoid analysis utilizing High for analysis. LOQ for all cannabinoids is 1 mg/L).

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Unit of Control Co Into A not Detected, MA-INCLAINAYED, ppII-Parts Fe initial, pp2-aits Fel billion, initial to Detection (LOD) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure, RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo Lab Director

State License # CMTL-0002 ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature

07/31/20

Matrix : Derivative

Relax & Rest 6000 mg CBD Full Spectrum Tincture N/A

PASSED

Page 2 of 4

Certificate of Analysis

5104 Reagan Drive Charlotte, NC, 28206, US Telephone: (919) 961-2204 Email:

barany.jeganatth@carolinacannabinoids.us

Sample : DA00709015-004 Harvest/LOT ID: W6RR 01-0720 Sampled : 07/06/20 Ordered : 07/06/20

Batch#: W6RR 01-0720 Sample Size Received: 15 ml Total Weight/Volume : N/A Completed : 07/31/20 Expires: 07/31/21 Sample Method : SOP Client Method

PASSED

Pesticides

Pesticides	LOD	Units	Action Level	Result
ABAMECTIN B1A	0.01	ppm	0.3	ND
ACEPHATE	0.01	ppm	3	ND
ACEQUINOCYL	0.01	ppm	2	ND
ACETAMIPRID	0.01	ppm	3	ND
ALDICARB	0.01	ppm	0.1	ND
AZOXYSTROBIN	0.01	ppm	3	ND
BIFENAZATE	0.01	ppm	3	ND
BIFENTHRIN	0.01	ppm	0.5	ND
BOSCALID	0.01	PPM	3	ND
CARBARYL	0.05	ppm	0.5	ND
CARBOFURAN	0.01	ppm	0.1	ND
CHLORANTRANILIPROLE	0.1	ppm	3	ND
CHLORMEQUAT CHLORIDE	0.05	ppm	3	ND
CHLORPYRIFOS	0.01	ppm	0.1	ND
CLOFENTEZINE	0.02	ppm	0.5	ND
COUMAPHOS	0.01	ppm	0.1	ND
DAMINOZIDE	0.01	ppm	0.1	ND
DIAZANON	0.01	ppm	0.2	ND
DICHLORVOS	0.01	ppm	0.1	ND
DIMETHOATE	0.01	ppm	0.1	ND
DIMETHOMORPH	0.02	ppm	3	ND
ETHOPROPHOS	0.01	ppm	0.1	ND
ETOFENPROX	0.01	ppm	0.1	ND
ETOXAZOLE	0.01	ppm	1.5	ND
FENHEXAMID	0.01	ppm	3	ND
FENOXYCARB	0.01	ppm	0.1	ND
FENPYROXIMATE	0.01	ppm	2	ND
FIPRONIL	0.01	ppm	0.1	ND
FLONICAMID	0.01	ppm	2	ND
FLUDIOXONIL	0.01	ppm	3	ND
HEXYTHIAZOX	0.01	ppm	2	ND
IMAZALIL	0.01	ppm	0.1	ND
IMIDACLOPRID	0.04	ppm	3	ND
KRESOXIM-METHYL	0.01	ppm	1	ND
MALATHION	0.02	ppm	2	ND
METALAXYL	0.01	ppm	3	ND
METHIOCARB	0.01	ppm	0.1	ND
METHOMYL	0.01	ppm	0.1	ND
MEVINPHOS	0.01	ppm	0.1	ND
MYCLOBUTANIL	0.01	ppm	3	ND
NALED	0.025	ppm	0.5	ND
OXAMYL	0.05	ppm	0.5	ND
PACLOBUTRAZOL	0.01	ppm	0.1	ND
PHOSMET	0.01	ppm	0.2	ND
PIPERONYL BUTOXIDE	0.1	ppm	3	ND
PRALLETHRIN	0.01	ppm	0.4	ND

Pesticides	LOD	Units	Action Leve	Result
PROPICONAZOLE	0.01	ppm	1	ND
PROPOXUR	0.01	ppm	0.1	ND
PYRETHRINS	0.05	ppm	1	ND
PYRIDABEN	0.02	ppm	3	ND
SPINETORAM	0.02	PPM	3	ND
SPIROMESIFEN	0.01	ppm	3	ND
SPIROTETRAMAT	0.01	ppm	3	ND
SPIROXAMINE	0.01	ppm	0.1	ND
TEBUCONAZOLE	0.01	ppm		<0.050
THIACLOPRID	0.01	ppm	0.1	ND
тніаметнохам	0.05	ppm	1	ND
TOTAL CONTAMINANT LOAD (PESTICIDES)	0	РРМ	20	ND
TOTAL PERMETHRIN	0.01	ppm	1	ND
TOTAL SPINOSAD	0.01	ppm	3	ND
TRIFLOXYSTROBIN	0.01	ppm	3	ND
CHLORDANE *	0.01	PPM	0.1	ND
PENTACHLORONITROBENZENE (PCNB)	0.01	PPM	0.2	ND
PARATHION-METHYL *	0.01	PPM	0.1	ND
CAPTAN *	0.025	PPM	3	ND
CHLORFENAPYR *	0.01	PPM	0.1	ND
CYFLUTHRIN *	0.01	PPM	1	ND
CYPERMETHRIN *	0.01	PPM	1	ND
문 ^북 Pesticides				PASSED
585,1665 1.03	eight 176g	Extraction date 07/09/20 01:07:19	1082,10	cted By
Analysis Method - SOP.T.30.065, SOP. SOP.T40.070	T.40.065, SO	P.T.40.066, SOP.T.40.070	, SOP.T.30.065,	
Analytical Batch - DA013809PES , DA0			Reviewed On- 07/09/20 11:43:44	
Instrument Used : DA-LCMS-001_DER (Running On :	(PES), DA-GC	MS-007	Batch Date : 07/09/20 09:3	.0:29

Pesticide screen is performed using LC-MS and/or GC-MS which can screen down to below single digit ppb concentrations for regulated Pesticides. Currently we analyze for 67 Pesticides. (Method: SOP.T.30.060 Sample Preparation for Pesticides Analysis via LCMSMS and GCMSMS. SOP.T40.065/SOP.T.40.066/SOP.T.40.066/SOP.T.40.066/SOP.T.40.066/SOP.T.40.065/SOP.T.40.066/SOP.T.40.065/SOP.T.40.065/SOP.T.40.065/SOP.T.40.065/SOP.T.40.065/SOP.T.40.065/SOP.T.40.065/SOP.T.40.065/SOP.T.40.065/SOP.T.40.065/SOP.T.40.065/SOP.T.40.057/SOP.

Dilution

10

Consums. ID

280678841 76262-590

concentrations for regulated Pesticides. Analytes marked with an asterisk were tested using GC-MS.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Into A not Detected, MA-INCLAINAYED, ppII-Parts Fe initial, pp2-aits Fel billion, initial to Detection (LOD) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure, RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo Lab Director State License # CMTL-0002

Reagent 052720.01 070620.R23

> ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature

07/31/20

Relax & Rest 6000 mg CBD Full Spectrum Tincture N/A

PASSED

Page 3 of 4

DAVIE, FL, 33314, US

Solvent

2-PROPANOL

ACETONITRILE

CHLOROFORM

ETHYL ACETATE

ETHYLENE OXIDE

PENTANES (N-PENTANE)

ETHYL ETHER

ACETONE

BENZENE

ETHANOL

HEPTANE

METHANOL

N-HEXANE

PROPANE

TOLUENE

TOTAL XYLENES

TRICHLOROETHYLENE

1,1-DICHLOROETHENE

1,2-DICHLOROETHANE

BUTANES (N-BUTANE)

DICHLOROMETHANE

Certificate of Analysis

Action

Level (PPM)

8

2

500

750

60

1

2

125

400

500

5000

250

250

750

5000

150

150

25

5

5000

5104 Reagan Drive Charlotte, NC, 28206, US Telephone: (919) 961-2204 Email: barany.jeganatth@carolinacannabinoids.us

Residual Solvents

Units

ppm

ppm

ppm

mag

mag

ppm

ppm

ppm

ppm

ppm

ppm

maa

ppm

ppm

ppm

ppm

mag

ppm

ppm

ppm

ppm

LOD

0.8

0.2

50

75

6

0.1

500

0.2

12.5

500

40

50

0.5

500

25

25

75

500

15

15

2.5

Sample : DA00709015-004 Harvest/LOT ID: W6RR 01-0720 Sampled : 07/06/20 Ordered : 07/06/20

PASSE

Result

ND

Pass/Fail

PASS

Batch#: W6RR 01-0720 Sample Size Received: 15 ml Total Weight/Volume : N/A Completed : 07/31/20 Expires: 07/31/21 Sample Method : SOP Client Method

Ä	Residual	Solvents	PASSED
Analyzed I	by Weight	Extraction date 07/09/20 11:07:57	Extracted By
	thod -SOP.T.40		N
Analytical E Instrument Running Or	Batch -DA013823 Used : DA-GCM	1SOL Reviewed Or S-002	n - 07/14/20 14:54:53
Analytical E Instrument Running Or	Batch -DA01382: Used : DA-GCM	1SOL Reviewed Or S-002	n - 07/14/20 14:54:53

single digit ppm concentrations. Currently we analyze for 21 Residual solvents.(Method: SOP.T.40.032 Residual Solvents Analysis via GC-MS).

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Timit of Quantitation (LOQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo Lab Director

State License # CMTL-0002 ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature

07/31/20

Relax & Rest 6000 mg CBD Full Spectrum Tincture

Page 4 of 4

Matrix : Derivative

PASSED

5104 Reagan Drive Charlotte, NC, 28206, US **Telephone:** (919) 961-2204 **Email:**

barany.jeganatth@carolinacannabinoids.us

Ċ,	Micro	bials	PASSED	ç	Mycot	oxins		PASSED
Analyte	LOD	Result	Action Level (cfu/g)	Analyte	LOD	Units	Result	Action Level (PPM)
ASPERGILLUS_FLAVUS		not present in 1 gram.		AFLATOXIN G2	0.002	ppm	ND	0.02
ASPERGILLUS_FUMIGA	ATUS	not present in 1 gram.		AFLATOXIN G1	0.002	ppm	ND	0.02
ASPERGILLUS_NIGER	16	not present in 1 gram.		AFLATOXIN B2	0.002	ppm	ND	0.02
ASPERGILLUS_TERREU ESCHERICHIA COLI SH		not present in 1 gram. not present in 1 gram.		AFLATOXIN B1	0.002	ppm	ND	0.02
SALMONELLA SPECIFI		not present in 1 gram.		OCHRATOXIN A+	0.002	ppm	ND	0.02

5

Batch#: W6RR 01-0720 Sample Size Received: 15 ml

Sample : DA00709015-004 Harvest/LOT ID: W6RR 01-0720

Sampled : 07/06/20

Ordered : 07/06/20

Analysis Method -SOP.T.40.043 / SOP.T.40.044 / SOP.T.40.041 Analytical Batch -DA013802MIC Batch Date : 07/09/20 Instrument Used : PathogenDX PCR_Array Scanner DA-111,PathogenDX PCR_DA-171 Running On :

Analyzed 513	by Weight 1.0869g	Extraction 0 07/09/20	late Ext	2 2
Reagent	Consums. ID	Consums. ID	Consums. ID	Consums. ID
062220.05	181019-274	19323	A07	2804025
101519.11	SG298A	190827060	2810012C	2808005
030620.12	181207119C	850C6-850H	027	
	918C4-918J	2802018	2811016	
	914C4-914AK	2803029	2807007	
	50AX30819	D003	2809004	

Certificate of Analysis

Microbiological testing for Fungal and Bacterial Identification via Polymerase Chain Reaction (PCR) method consisting of sample DNA amplified via tandem Polymerase Chain Reaction (PCR) as a crude lysate which avoids purification. (Method SOPT.40.043) If a pathogenic Escherichia Coli, Salmonella, Aspergillus finuigatus, Aspergillus flavus, Aspergillus niger, or Aspergillus terreus is detected in 1g of a sample, the sample fails the microbiological-impurity testing. Pour-plating is used for quantitation and confirmation, Total Yeast and Mold has an action limit of 100,000 CFU.

Analysis Method -SOP.T.30.065, SOP.T.40.065 Analytical Batch -DA013811MYC | Reviewed On - 07/14/20 16:53:22 Instrument Used : DA-LCMS-001_DER (MYC) Running On :

Batch Date : 07/09/20 09:12:05

Total Weight/Volume : N/A

Completed : 07/31/20 Expires: 07/31/21

Sample Method : SOP Client Method

Analyzed by	Weight	Extraction date	Extracted By	
585	1g	07/09/20 05:07:48	585	

Aflatoxins B1, B2, G1, G2, and Ochratoxins A testing using LC-MS. (Method: SOP.T.30.065 for Sample Preparation and SOP.T40.065 Procedure for Mycotoxins Quantification Using LCMS. LOQ 1.0 ppb). Aflatoxin B1, B2, G1, and G2 must individually be <20ug/Kg. Ochratoxins must be <20µg/Kg.

Hg	Hg Heavy		als	PASSED	
Reagent 030920.02 070920.R01 062520.R02 022520.02 030420.06 070120.01			Dilution 100	Consums. ID 89401-566	
Metal	LOD	Unit	Result	Action Level (PPM)	
ARSENIC	0.02	РРМ	ND	1.5	
CADMIUM	0.02	PPM	ND	0.5	
LEAD	0.05	PPM	ND	0.5	
MERCURY	0.02	PPM	<0.100	3	
Analyzed by 53	Weight 0.2597g	Extracti 07/09/20	on date 02:07:10	Extracted By 1022	
				3:38:00	
Spectrometer) which metals using Method		to below si nple Prepai	ngle digit ppb cor	pled Plasma – Mass icentrations for regulated heavy letals Analysis via ICP-MS and	
eport is					
	rge Segredo				

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Lab Director State License # CMTL-0002 ISO Accreditation # ISO/IEC

17025:2017 Accreditation PJLA-Testing 97164

Signature

07/31/20