

Certificate of Analysis

Oct 22, 2020 | The Flowery

Homestead, FL, 33090, US

FLOWERY

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo Lab Director

State License # CMTL-0002 ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164 10/22/20

Signature

Kaycha Labs

Golden Nugget Matrix: Flower Sample:DA01009002-004 Harvest/Lot ID: 8198622657603560 Cultivation Facility: N/A Processing Facility : N/A

Processing Facility : N/A Seed to Sale #8198622657603560 Batch Date :09/17/20 Batch#: 8198622657603560 Sample Size Received: 28 gram Total Weight/Volume: N/A Retail Product Size: 3.5 gram gram Ordered : 10/09/20 sampled : 10/09/20 Completed: 10/22/20 Sampling Method: SOP.T.20.010

PASSED

Page 1 of 4

Kaycha Labs

Golden Nugget 3.5 (Bud) Golden Nugget Matrix : Flower

PASSED

Certificate of Analysis

Samples From: Homestead, FL, 33090, US **Telephone:** (321) 266-2467 **Email:** osivan@moozacapital.com Sample : DA01009002-004 Harvest/LOT ID: 8198622657603560

Batch# : 8198622657603560 Sampled :10/09/20 Ordered :10/09/20 Sample Size Received : 28 gram Total Weight/Volume : N/A Completed : 10/22/20 Expires: 10/22/21 Sample Method : SOP.T.20.010

Page 2 of 4

TESTED

0

Terpenes

ALPHA-HUMULERE 0.007 1.333 0.133 NO	ND ND 0.212 ND 3.361 < 0.2 ND 0.846	ND ND 0.021 ND 0.336 < 0.020 ND		ISOBORNEOL HEXAHYDROTHYMOL FENCHYL ALCOHOL 3-CARENE CIS-NEROLIDOL	0.007 0.007 0.007 0.007 0.007	ND ND ND ND	ND ND ND	
Administre 0.007 ND	ND ND 0.212 ND 3.361 < 0.2 ND 0.846	ND ND 0.021 ND 0.336 < 0.020 ND		HEXAHYDROTHYMOL FENCHYL ALCOHOL 3-CARENE CIS-NEROLIDOL	0.007 0.007 0.007 0.007	ND ND ND	ND ND	
ABINENE 0.007 ND	ND ND 0.212 ND 3.361 < 0.2 ND 0.846	ND ND 0.021 ND 0.336 < 0.020 ND		FENCHYL ALCOHOL 3-CARENE CIS-NEROLIDOL	0.007 0.007 0.007	ND ND	ND	
ABINENE PORATE ERPINEOL 0.007 ND ND CRPINEOL 0.007 ND ND ERPINEOL 0.007 ND ND ERPINEOL 0.007 ND ND REVINCIENE 0.007 ND ND ARVOPHYLLENE 0.007 ND ND AMPIOR 0.013 ND ND AMPIOR 0.013 ND ND AMPIOR 0.007 ND ND PIAA-TERPINENE 0.007 ND ND PIAA-TERPINENE 0.007 ND ND PIAA-TERPINENE 0.007 ND ND PIAA-TERPINENE	ND 0.212 ND 3.361 < 0.2 ND 0.846	ND 0.021 ND 0.336 < 0.020 ND		3-CARENE CIS-NEROLIDOL	0.007 0.007	ND		
VDRATE Screen 0.007 ND ND ERPINEOL 0.007 ND ND ND ND ETA- 0.007 3.361 0.336 0.007 ND ND RAMS-NEROLIDOL 0.007 ND ND ND ND ND LPHA-BISABOLOL 0.007 ND ND ND ND ND LPHA-BISABOLOL 0.007 ND ND ND ND ND ARYOPHYLENE 0.007 0.21 0.022 ND	0.212 ND 3.361 < 0.2 ND 0.846	0.021 ND 0.336 < 0.020 ND		CIS-NEROLIDOL	0.007		ND	
ERPINOLENE 0.007 ND ND ND Fra- unor ND ND ND ND ND RTAVD-MYLENE 0.007 3.361 0.336 0.336 0.007 ND ND RAMS-NEROLIDOL 0.007 0.007 0.22 < 0.020	ND 3.361 < 0.2 ND 0.846	ND 0.336 < 0.020 ND					ND	
ETA- MAYOPHYLLENE RANS-NEROLIDOL 0.007 3.361 0.336 ARAYOPHYLLENE RANS-NEROLIDOL 0.007 ND ND ND ALMCENE 0.007 ND	3.361 < 0.2 ND 0.846	0.336 < 0.020 ND		ISOPULEGOL		ND	ND	
ARYOPHYLLENE COUCH	< 0.2 ND 0.846	< 0.020 ND			0.007	ND	ND	
ALENCENE 0.007 ND ND ND ND D	ND 0.846	ND						
LPHA-BISABOLOL 0.007 0.221 0.022 Terpenes TESTER ARYOPHYLENE 0.007 0.221 0.022 Image: Construction of the second	0.846					$\Delta \Delta$		
NAMPHOR 0.007 0.221 0.022 ND ND ND AMPHOR 0.013 ND ND SMPHOR 0.013 ND ND ORNEOL 0.013 ND ND STA-PINENE 0.007 1.23 0.112 ETA-PINENE 0.007 ND ND PHA-FINENE 0.007 ND ND PHA-PINENE 0.007 ND ND PHA-PINENE 0.007 ND ND UPHA-PINENE 0.007 ND ND Recipient ND ND ND JLEGONE 0.007 ND ND HELLANDRENE 0.007 ND ND NALOOL 0.007 ND ND NALOOL 0.007 ND ND NALOOL 0.007 ND ND RearW1 ACETATE 0.007 ND ND RearW1 ACETATE 0.007 ND <								
RAYOPHYLLENE 0.007 0.221 0.022 MMPHOR 0.013 ND ND AMPHOR 0.013 ND ND MMPHOR 0.013 ND ND STAPINEOL 0.007 < 0.2 < 0.020 PTA-PINENE 0.007 1.123 0.112 1351 Nol 0 PL STA-PINENE 0.007 2.541 0.254 Analysis Method -SOP.T.40.090 Analytical Batch -DA017226TER Reviewed On - 10/14/20 11:37:3 PHA-PINENE 0.007 ND ND ND PHA-PINENE 0.007 ND ND PHA-PINENE 0.007 ND ND ND PHA-PINENE 0.007 ND ND PHA-PINENE 0.007 ND ND ND PHA-PINENE 0.007 ND ND ULGONE 0.007 ND ND ND PHA-PINENE 0.007 ND ND NALOOL 0.007 ND ND ND PINENE 0.007 <	0.221	0.084		KON Ter	penes			TESTED
AMPHENE 0.007 < 0.2 < 0.020 ND ND ND ND Manalyzed by Weight Louing Extraction date Inditional Extracted By ETA-PINENE 0.007 1.123 0.112 1351 10/12/20 09:10:13 1351 LPHA-FTERPINENE 0.007 ND ND ND ND 1351 LPHA-TERPINENE 0.007 ND ND ND Analysis Method -SOP.T.40.090 Analytical Batch -DA01722GTER Reviewed On - 10/14/20 11:37:3 Instrument Used : DA-GCMS-004 Running On : 10/12/20 09:00:59 Reviewed On - 10/14/20 11:37:3 LPHA- 0.007 ND ND ND Batch Date : 10/12/20 09:00:59 Reviewed On - 10/14/20 11:37:3 LPHA- 0.007 ND ND ND PAID PAID </td <td></td> <td>0.022</td> <td></td> <td>1 Alexandre</td> <td></td> <td></td> <td></td> <td></td>		0.022		1 Alexandre				
DRNEOL 0.013 ND ND ND Analyzed by Weight 1.0010g Extraction date 10/12/20 09:10:13 Extracted By ETA-PINENE 0.007 2.541 0.254 0.351 1.0010g 10/12/20 09:10:13 1351 LPHA-TERPINENE 0.007 ND ND ND Analysis Method -SOP.T.40.090 Analysis Method -SOP.T.40.091 Analysis Method -SOP.T.40.091 Analysis Method -SOP.T.40.091 Batch Date : 10/12/20 14:30:43 Batch Date : 10/12/20 14:30:43 Batch Date : 10/12/20 09:00:59 Image: Sortange of the sort	ND	ND						
ETA-PINENE 0.007 1.123 0.112 1351 1.0010g 10/12/20 09:10:13 1351 ETA-MYRCENE 0.007 2.541 0.254 Analysis Method -SOP.T.40.090 Analytical Batch -DA01722CTER Reviewed On - 10/14/20 11:37:3 PHA-TERPINENE 0.007 ND ND ND Analytical Batch -DA01722CTER Reviewed On - 10/14/20 11:37:3 LEGONE 0.007 ND ND ND ND ND LEGONE 0.007 ND ND ND ND ND LPHA- 0.007 ND ND ND ND ND ND LPHA- 0.007 ND ND ND ND ND ND LPHA- 0.007 ND	< 0.2	< 0.020			X, Y	V V	(\mathbf{V})	
Initial Control One of the control	ND	ND						Extracted By
LPHA-TERPINENE 0.007 ND ND Analysis Method -SOP.T.40.090 LPHA-PINENE 0.007 2.699 0.269 Analysis Method -SOP.T.40.090 EDROL 0.007 ND ND ND EDROL 0.007 ND ND ND ULEGONE 0.007 ND ND ND LPHA- 0.007 ND ND ND Reagent Dilution Consums. ID NALOOL 0.007 ND ND ValoL 0.007 ND ND ValoL 0.007 ND ND ERANYL ACETATE 0.007 ND ND ERANYL ACETATE 0.007 ND ND ERANYL ACETATE 0.007 <t< td=""><td>1.123</td><td>0.112</td><td></td><td>1351 1.</td><td>0010g 10/</td><td>12/20 09:10:1</td><td>13</td><td>1351</td></t<>	1.123	0.112		1351 1.	0010g 10/	12/20 09:10:1	13	1351
LPHA-TERPINENE 0.007 ND ND LPHA-PINENE 0.007 2.699 0.269 BDROL 0.007 ND ND EDROL 0.007 ND ND ULEGONE 0.007 ND ND PHA 0.007 ND ND HELLANDRENE 0.007 ND ND EROL 0.007 ND ND NALOOL 0.007 ND ND NALOOL 0.007 ND ND VAIOL 0.007 ND ND VAIOL 0.007 0.612 0.601 UAIOL 0.007 ND ND VAIOL 0.007 ND ND ERANIOL 0.007 ND ND ERANIOL 0.007 <0.2	2.541	0.254						
LPHA-PINENE 0.007 2.699 0.269 BDROL 0.007 ND ND LPHA- 0.007 ND ND Reviewed On - 10/14/20 11:37:3 Instrument Used : DA-GCMS-004 Running On : 10/12/20 14:30:43 Batch Date : 10/12/20 09:00:59 Reagent Dilution Consums. ID PRADUL 0.007 ND ND NALOOL 0.007 ND ND ValoL 0.007 ND ND ValoL 0.007 ND ND ValoL 0.007 ND ND Reanviol 0.007 ND ND Reanviol 0.007 ND ND Reanviol 0.007 ND ND Reanviol 0.007 ND ND	ND	ND						
EDROL 0.007 ND ND ND ND ULEGONE 0.007 ND ND ND Running On : 10/12/20 14:30:43 Batch Date : 10/12/20 09:00:59 LPHA- NELLANDRENE 0.007 ND ND ND Batch Date : 10/12/20 09:00:59 CIMENE 0.007 ND ND ND ND NALOOL 0.007 ND ND 092120.R25 10 287035261 MONENE 0.007 ND ND ND 76262-590 101240.923 VAIOL 0.007 ND ND ND 101220.R23 76262-590 VAIOL 0.007 ND ND 101220.R24 101800 12499402 VAIOL 0.007 ND ND Terpenoid profile screening is performed using GC-MS with Liquid Injection (Gas Chromatography – Mass Spectrometer) which can screen 38 terpenes using Method SOP.T.40.091 Terpenoid Analysis Via GC/MS. ENCHONE 0.007 0.616 0.061 Instrument Used : LANON USE Instrument Used : LANON USE	2.699	0.269					ewed On -	10/14/20 11:37:3
DJLEGONE 0.007 ND ND LPHA- HELLANDRENE 0.007 ND ND CIMENE 0.007 ND ND NLOOL 0.007 ND ND NALOOL 0.007 ND ND NALOOL 0.007 ND ND VAIOL 0.007 ND ND 092120.R25 10 287035261 101220.R23 10220.R24 101220.R23 10226.R24 12499402 VAIOL 0.007 ND ND ND Terpenoid profile screening is performed using GC-MS with Liquid Injection RAMNA- RAMA- ENCHONE 0.007 < 0.2 < 0.020 < 0.021 Terpenoid profile screening is performed using GC/MS. RNNESENE 0.007 < 0.2 < 0.020 < 0.021 < 0.020				Instrument Used : I	DA-GCMS-00	4		
PHA- TELLANDRENE0.007NDNDBatch Date : 10/12/20 09:00:59CIMENE0.007<0.2				Running On : 10/12	/20 14:30:43			
EROL 0.007 ND ND ND NALOOL 0.007 0.612 0.061 092120.R25 10 287035261 MONENE 0.007 ND ND 101220.R23 76262-590 UAIOL 0.007 ND ND 101220.R23 76262-590 ERANYL ACETATE 0.007 ND ND 091820.R01 12499402 ERANNOL 0.007 <0.2				Batch Date : 10/12/	20 09:00:59	$\langle \chi$		
EROL 0.007 ND ND INALOOL 0.007 0.612 0.061 IMONENE 0.007 1.103 0.110 UAIOL 0.007 ND ND PERANYL ACETATE 0.007 ND ND ERANYL ACETATE 0.007 MMA- 0.007 ND ND ERANUL 0.007 ND ND ENCHONE 0.007 ENCHONE 0.007 ENCHONE 0.007 ENCHONE 0.007 ENCHONE 0.007 <td>< 0.2</td> <td>< 0.020</td> <td></td> <td>Reagent</td> <td>Di</td> <td>lution</td> <td>Consum</td> <td>is. ID</td>	< 0.2	< 0.020		Reagent	Di	lution	Consum	is. ID
Initial 0.007 0.011 0.001 <	ND	ND						
Morene 0.007 1.103 0.110 VAIOL 0.007 ND ND ERANYL ACETATE 0.007 ND ND ERANIOL 0.007 < 0.2	0.612	0.061			10			
UAIOL 0.007 ND ND ERANYL ACETATE 0.007 ND ND ERANIOL 0.007 < 0.2	1.103	0.110						
ERANYL ACETATE 0.007 ND ND ERANIOL 0.007 < 0.2	ND	ND					12499402	
ERANIOL 0.007 < 0.2				091820.R01				
AMMA- ERPINENE 0.007 ND ND ENCHONE 0.007 < 0.2				Ternenoid profile scre	oning is porfe	rmed using	a GC-MS wit	th Liquid Injection
ENCHONE 0.007 < 0.2 < 0.020 ARNESENE 0.007 0.616 0.061	ND			(Gas Chromatography	- Mass Spec	rometer) v	which can so	creen 38 terpenes
	< 0.2	< 0.020		using Method SOF.1.4	0.091 Terpen	olu Allalysi		5.
otal (%) 1.467	0.616						\sim	
	1.467				Х / \			
		1.123 2.541 ND 2.699 ND ND ND < 0.2 ND 0.612 1.103 ND ND < 0.2 ND < 0.2 ND < 0.2	1.123 0.112 2.541 0.254 ND ND 2.699 0.269 ND ND ND ND ND ND ND ND 0.612 0.061 1.103 0.110 ND ND ND ND < 0.2	1.123 0.112 2.541 0.254 ND ND 2.699 0.269 ND ND ND ND ND ND ND ND <0.2	1.123 0.112 1351 1.1 2.541 0.254 Analysis Method -S ND ND ND Instrument Used : I Running On : 10/12 Batch Date : 10/12 Batch Date : 10/12 ND ND ND ND ND 092120.R25 1.103 0.110 092120.R25 ND ND 092120.R24 091820.R01 01220.R24 091820.R01 Terpenoid profile screet (Gas Chromatography using Method SOP.T.4 0.616	1.123 0.112 1351 1.0010g 10/ 2.541 0.254 Analysis Method -SOP.T.40.090 Analysis Method -SOP.T.40.090 ND ND ND Analysis Method -SOP.T.40.090 2.699 0.269 0.269 Instrument Used : DA-GCMS-000 ND ND ND Batch Date : 10/12/20 14:30:43 ND ND ND Batch Date : 10/12/20 09:00:59 < 0.2	1.123 0.112 1351 1.0010g 10/12/20 09:10: 2.541 0.254 Analysis Method -SOP.T.40.090 ND ND Analysis Method -SOP.T.40.090 2.699 0.269 Instrument Used : DA-GCMS-004 ND ND ND ND ND Batch Date : 10/12/20 09:00:59 < 0.2	1.123 0.112 1351 1.0010g 10/12/20 09:10:13 2.541 0.254 Analysis Method -SOP.T.40.090 Analysis Method -SOP.T.40.090 ND ND ND Analysis Method -SOP.T.40.090 ND ND ND Analysis Method -SOP.T.40.090 ND ND ND ND ND ND ND Batch -DA017226TER Reviewed On - ND ND ND ND ND ND ND ND ND ND Batch Date : 10/12/20 09:00:59 ND < 0.2

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo Lab Director

State License # CMTL-0002 ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature

10/22/20

Signed On

DAVIE, FL, 33314, US

Kaycha Labs

Golden Nugget 3.5 (Bud) Golden Nugget Matrix : Flower

PASSED

Certificate of Analysis

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467 Email: osivan@moozacapital.com

Sample : DA01009002-004 Harvest/LOT ID: 8198622657603560

Batch# : 8198622657603560 Sampled : 10/09/20 Ordered : 10/09/20

Sample Size Received : 28 gram Total Weight/Volume : N/A Completed : 10/22/20 Expires: 10/22/21 Sample Method : SOP.T.20.010

PASSED

Page 3 of 4

R 0

Pesticides

Pesticides	LOD	Units	Action Level	Result	Pestici	des	LOD	Units	Action Level	Result	
ABAMECTIN B1A	0.01	ppm	0.1	ND	PROPICONA	ZOLE	0.01	ppm	0.1	ND	
ACEPHATE	0.01	ppm	0.1	ND	PROPOXUR	44	0.01	ppm	0.1	ND	
ACEQUINOCYL	0.01	ppm	0.1	ND	PYRETHRIN	IS	0.05	ppm	0.5	ND	
ACETAMIPRID	0.01	ppm	0.1	ND	PYRIDABEN	I T L	0.02	ppm	0.2	ND	
ALDICARB	0.01	ppm	0.1	ND	SPINETORA	м	0.02	PPM	0.2	ND	
AZOXYSTROBIN	0.01	ppm	0.1	ND	SPIROMESI	FEN	0.01	ppm	0.1	ND	
BIFENAZATE	0.01	ppm	0.1	ND	SPIROTETR	АМАТ	0.01	ppm	0.1	ND	
BIFENTHRIN	0.01	ppm	0.1	ND	SPIROXAMI	INE	0.01	ppm	0.1	ND	
BOSCALID	0.01	PPM	0.1	ND	TEBUCONA	ZOLE	0.01	ppm	0.1	ND	
CARBARYL	0.05	ppm	0.5	ND	THIACLOPR	lD	0.01	ppm	0.1	ND	
CARBOFURAN	0.01	ppm	0.1	ND	THIAMETHO	МАХАМ	0.05	ppm	0.5	ND	
CHLORANTRANILIPROLE	0.1	ppm	1	ND	TOTAL CON	TAMINANT LOAD	0	PPM	5	< 0.050	
CHLORMEQUAT CHLORIDE	0.1	ppm	1	ND	(PESTICIDE TOTAL PER		0.01	ppm	0.1	ND	
CHLORPYRIFOS	0.01	ppm	0.1	ND	TOTAL SPIN		0.01	ppm	0.1	ND	
CLOFENTEZINE	0.02	ppm	0.2	ND	TRIFLOXYS	TROBIN	0.01	ppm	0.1	ND	
COUMAPHOS	0.01	ppm	0.1	ND	CHLORDAN		0.01	PPM	0.1	ND	
DAMINOZIDE	0.01	ppm	0.1	ND		- DRONITROBENZENE		PPM	0.15	ND	
DIAZANON	0.01	ppm	0.1	ND	*		(1 6112) 0.01	PPM	0.15	ND	
DICHLORVOS	0.01	ppm	0.1	ND	PARATHION	I-METHYL *	0.01	PPM	0.1	ND	
DIMETHOATE	0.01	ppm	0.1	ND	CAPTAN *		0.025	PPM	0.7	ND	
DIMETHOMORPH	0.02	ppm	0.2	ND	CHLORFEN		0.01	PPM	0.1	ND	
ETHOPROPHOS	0.01	ppm	0.1	ND	CYFLUTHRI		0.01	PPM	0.5	ND	
ETOFENPROX	0.01	ppm	0.1	ND	CYPERMET	HRIN *	0.01	PPM	0.5	ND	
ETOXAZOLE	0.01	ppm	0.1	ND	R	Pesticides				PASS	E
FENHEXAMID	0.01	ppm	0.1	ND	0						
FENOXYCARB	0.01	ppm	0.1	ND	1.						
FENPYROXIMATE	0.01	ppm	0.1	ND	Analyze 585 . 16		Weight 1.0446g	Extraction date 10/12/20 01:10:14	Extracte 1665, 1665	аву	
FIPRONIL	0.01	ppm	0.1	ND		ethod - SOP.T.30.06	5, SOP.T.40.065, SO	P.T.40.066, SOP.T.40.070	, SOP.T.30.065,		
FLONICAMID	0.01	ppm	0.1	ND	Analytical I	Batch - DA017243PI	ES , DA017250VOL		Reviewed On- 10/12/20		
FLUDIOXONIL	0.01	ppm	0.1	ND	Instrument	Used : DA-LCMS-00	2_FLO (PES) , DA-GC	MS-006	14:00:06		
HEXYTHIAZOX	0.01	ppm	0.1	ND		n : 10/12/20 17:54:3	3,10/12/20 16:49:11		Batch Date : 10/12/20 09:31:	00	
IMAZALIL	0.01	ppm	0.1	ND	Reagent		Dilution	Consums.	ID		
IMIDACLOPRID	0.04	ppm	0.4	ND	092320.10		10	287035261 76262-590			
KRESOXIM-METHYL	0.01	ppm	0.1	ND	Pesticide	screen is perform	med using LC-MS	and/or GC-MS which c	an screen down to below	single digit ppb	1
MALATHION	0.02	ppm	0.2	ND				rrently we analyze for via LCMSMS and GCM	67 Pesticides. (Method: S	OP.T.30.060	
METALAXYL	0.01	ppm	0.1	ND	SOP.T40.	065/SOP.T.40.06	6/SOP.T.40.070 P	rocedure for Pesticide	Quantification Using LCM		
METHIOCARB	0.01	ppm	0.1	ND					screen down to below sin asterisk were tested usin		
METHOMYL	0.01	ppm	0.1	ND	concentra	acions for regula	leu Pesticides. An	arytes marked with an	asterisk were tested usin	y uc-№5.	
MEVINPHOS	0.01	ppm	0.1	ND		/					_
MYCLOBUTANIL	0.01	ppm	0.1	ND							
NALED	0.01	ppm	0.25	ND							
OXAMYL	0.025	ppm	0.25	ND							
PACLOBUTRAZOL	0.03		0.1	ND							
PHOSMET	0.01	ppm		ND							
PIPERONYL BUTOXIDE	0.01	ppm	0.1 3	ND							
	0.1	ppm	3	ND							
PRALLETHRIN	0.01	ppm	0.1	ND							

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, pb=Parts Per Billion. Limit of Detection (LoD) and Unit of Control Con Into A not Detected, MA-INCLAINAYED, ppII-Parts Fe initial, pp2-aits Fel billion, initial to Detection (LOD) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure, RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo Lab Director

State License # CMTL-0002 ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature

10/22/20

PASSED

Signed On

4131 SW 47th AVENUE DAVIE, FL, 33314, US

SALMONELLA SPECIFIC GENE

TOTAL YEAST AND MOLD

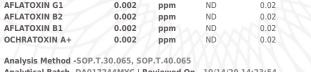
Kaycha Labs

Golden Nugget 3.5 (Bud) Golden Nugget Matrix : Flower

Cert	tificate o	of Analy	sis				PASSED
		8198622657603560 Sampled : 10/09/20		olume : N/A 22/20 Expires	5: 10/22/21		Page 4 of 4
Ċ5	Microbials	PASSED	ఫ్లో	Mycot	oxins		PASSED
Analyte ASPERGILLUS_FLAVU ASPERGILLUS_FUMIC ASPERGILLUS_NIGER ASPERGILLUS_TERRE ESCHERICHIA_COLI_S	ATUS not present in 1 gr not present in 1 gr RUS not present in 1 gr	am. am. am.	Analyte AFLATOXIN G2 AFLATOXIN G1 AFLATOXIN B2 AFLATOXIN B1	LOD 0.002 0.002 0.002 0.002	Units ppm ppm ppm ppm	Result ND ND ND ND	Action Level (PPM) 0.02 0.02 0.02 0.02 0.02

100000

Analysis Method -SOP.T.40.043 / SOP.T.40.044 / SOP.T.40.041 Analytical Batch -DA017225MIC , DA017230TYM Batch Date : 10/12/20, 10/12/20 Instrument Used : PathogenDX PCR_Array Scanner DA-111,PathogenDX PCR_DA-171, DA-111 PathogenDX Scanner,DA-089 Mini-amp Thermocycler Running On : 10/12/20, 10/13/20


100

not present in 1 gram.

< 100 CFU

Analyzed 513, 513	by Weig			Extracted By 513, 513
Reagent	Consums. ID	Consums. ID	Consums. ID	Consums. ID
071020.10	SG298A	2810015B	2808006	20334
101619.02	2802021	918C4-918J	2811018	012020
	2803029	914C4-914AK	850C6-850H	2807008
	D005	031	181019-274	
	A09	50AX30819	11989-024CC-024	
	2809005	2804026	181207119C	

Microbiological testing for Fungal and Bacterial Identification via Polymerase Chain Reaction (PCR) method consisting of sample DNA amplified via tandem Polymerase Chain Reaction (PCR) as a crude lysate which avoids purification. (Method SOP.T.40.043) If a pathogenic Escherichia Coli, Salmonella, Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, or Aspergillus terreus is detected in 1g of a sample, the sample fails the microbiological-impurity testing. Pour-plating is used for quantitation and confirmation, Total Yeast and Mold has an action limit of 100,000 CFU.

Analytical Batch -DA017244MYC | Reviewed On - 10/14/20 14:23:54 Instrument Used : DA-LCMS-002_FLO (MYC) Running On : 10/12/20 17:54:00 Batch Date : 10/12/20 09:32:46

Analyzed by	Weight	Extraction date	Extracted By
585	1g	10/12/20 04:10:51	585

Aflatoxins B1, B2, G1, G2, and Ochratoxins A testing using LC-MS. (Method: SOP.T.30.065 for Sample Preparation and SOP.T40.065 Procedure for Mycotoxins Quantification Using LCMS. LOQ 1.0 ppb). Aflatoxin B1, B2, G1, and G2 must individually be <20ug/Kg. Ochratoxins must be <20µg/Kg.

[Нд]	Heavy	/ Meta	ls		PASSED
Reagent	Reag	ent	Dilu	ition	Consums. ID
100720.R23 100520.R03 100520.R11 100520.R01 100920.R01 100520.R04	100520 092820 082520 090320 030420 100120	D.R01 D.05 D.01 D.06	100		89401-566
Metal	LOD	Unit	Result	Act	tion Level (PPM)
ARSENIC	0.02	РРМ	ND	0.2	
CADMIUM	0.02	РРМ	ND	0.2	
MERCURY	0.02	PPM	<0.100	0.2	
LEAD	0.05	РРМ	ND	0.5	
Analyzed by 1022	Weight 0.2543g	Extractio 10/12/20 1			Extracted By 1783
Analysis Method Analytical Batch - Instrument Used Running On : 10/1 Batch Date : 10/1	DA017223HEA F : DA-ICPMS-002 L3/20 14:39:11			0:03:12	
	h can screen down d SOP.T.30.052 Sar	to below sing nple Preparat	le digit ppb con	centrati	asma – Mass ions for regulated heavy nalysis via ICP-MS and

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo Lab Director State License # CMTL-0002

ISO Accreditation # ISO/IEC

17025:2017 Accreditation PJLA-Testing 97164

10/22/20

Signature Signed On